60 resultados para MAXILLOMANDIBULAR FIXATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradable polymers polylactide (PLA) and polylactide-co-glycolide (PLGA) have found widespread use in modern medical practice. However, their slow degradation rates and tendency to lose strength before mass have caused problems. The aim of this study was to ascertain whether treatment with e-beam radiation could address these problems. Samples of PLA and PLGA were manufactured and placed in layered stacks, 8.1 mm deep, before exposure to 50 kGy of e-beam radiation from a 1.5 MeV accelerator. Gel permeation chromatography testing showed that the molecular weight of both materials was depth-dependent following irradiation, with samples nearest to the treated surface showing a reduced molecular weight. Samples deeper than 5.4 mm were unaffected. Computer modeling of the transmission of a 1.5 MeV e-beam in these materials corresponded well with these findings. An accelerated mass-loss study of the treated materials found that the samples nearest the irradiated surface initiated mass loss earlier, and at later stages showed an increased percentage mass loss. It was concluded that e-beam radiation could modify the degradation of bioabsorbable polymers to potentially improve their performance in medical devices, specifically for improved orthopedic fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha polyesters such as poly(L-lactide) and poly(glycolide) are biodegradable materials used in fracture fixation and they need to be assessed for problems associated with their degradation products. This study has compared cell responses to low molecular weight poly(L-lactide) particles, lactate monomer, poly(glycolide) particles and glycolic acid at cytotoxic and sub-cytotoxic concentrations. Murine macrophages were cultured in vitro and the release of lactate dehydrogenase (LDH), prostaglandin E-2 (PGE(2)) and interleukin-1 alpha IL-1alpha was measured following the addition of particles or monomer. Experiments revealed that both the poly(L-lactide) and poly(glycolide) particles gave rise to dose dependent increases in LDH release and an increase in IL-1alpha and PGE(2) release. Comparisons of the poly(L-lactide) particles to the poly(glycolide) particles did not reveal any differences in their stimulation of LDH, IL-1alpha and PGE(2) release. The lactate and glycolate monomers did not increase PGE(2) or IL-1alpha release above control levels. There was no difference in biocompatibility between the poly(L-lactide) and poly(glycolide) degradation products both in particulate and monomeric form. (C) 2003 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress analysis of the cement fixation of orthopaedic implants to bone is frequently? carried out using finite element analysis. However, the stress distribution in the cement laver is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stein tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However; if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stein generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stein. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rota-tion of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rotation of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of Eye Tracking (ET) to the study of social functioning in Asperger Syndrome (AS) provides a unique perspective into social attention and cognition in this atypical neurodevelopmental group. Research in this area has shown how ET can capture social attention atypicalities within this group, such as diminished fixations to the eye region when viewing still images and movie clips; increased fixation to the mouth region; reduced face gaze. Issues exist, however, within the literature, where the type (static/dynamic) and the content (ecological validity) of stimuli used appear to affect the nature of the gaze patterns reported. Objectives: Our research aims were: using the same group of adolescents with AS, to compare their viewing patterns to age and IQ matched typically developing (TD) adolescents using stimuli considered to represent a hierarchy of ecological validity, building from static facial images; through a non-verbal movie clip; through verbal footage from real-life conversation; to eye tracking during real-life conversation. Methods: Eleven participants with AS were compared to 11 TD adolescents, matched for age and IQ. In Study 1, participants were shown 2 sets of static facial images (emotion faces, still images taken from the dynamic clips). In Study 2, three dynamic clips were presented (1 non-verbal movie clip, 2 verbal footage from real-life conversation). Study 3 was an exploratory study of eye tracking during a real-life conversation. Eye movements were recorded via a HiSpeeed (240Hz) SMI eye tracker fitted with chin and forehead rests. Various methods of analysis were used, including a paradigm for temporal analysis of the eye movement data. Results: Results from these studies confirmed that the atypical nature of social attention in AS was successfully captured by this paradigm. While results differed across stimulus sets,
collectively they demonstrated how individuals with AS failed to focus on the most socially relevant aspects of the various stimuli presented. There was also evidence that the eye movements of the AS group were atypically affected by the presence of motion and verbal information. Discriminant Function Analysis demonstrated that the ecological validity of stimuli was an important factor in identifying atypicalities associated with AS, with more accurate classifications of AS and TD groups occurring for more naturalistic stimuli (dynamic rather than static). Graphical analysis of temporal sequences of eye movements revealed the atypical manner in which AS participants followed interactions within the dynamic stimuli. Taken together with data on the order of gaze patterns, more subtle atypicalities were detected in the gaze behaviour of AS individuals towards more socially pertinent regions of the dynamic stimuli. Conclusions: These results have potentially important implications for our understanding of deficits in Asperger Syndrome, as they show that, with more naturalistic stimuli, subtle differences in social attention can be detected that

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of intervening saccades on the manual interception of a moving target. Previous studies suggest that stationary reach goals are coded and updated across saccades in gaze-centered coordinates, but whether this generalizes to interception is unknown. Subjects (n = 9) reached to manually intercept a moving target after it was rendered invisible. Subjects either fixated throughout the trial or made a saccade before reaching (both fixation points were in the range of -10° to 10°). Consistent with previous findings and our control experiment with stationary targets, the interception errors depended on the direction of the remembered moving goal relative to the new eye position, as if the target is coded and updated across the saccade in gaze-centered coordinates. However, our results were also more variable in that the interception errors for more than half of our subjects also depended on the goal direction relative to the initial gaze direction. This suggests that the feedforward transformations for interception differ from those for stationary targets. Our analyses show that the interception errors reflect a combination of biases in the (gaze-centered) representation of target motion and in the transformation of goal information into body-centered coordinates for action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catching a ball involves a dynamic transformation of visual information about ball motion into motor commands for moving the hand to the right place at the right time. We previously formulated a neural model for this transformation to account for the consistent leftward movement biases observed in our catching experiments. According to the model, these biases arise within the representation of target motion as well as within the transformation from a gaze-centered to a body-centered movement command. Here, we examine the validity of the latter aspect of our model in a catching task involving gaze fixation. Gaze fixation should systematically influence biases in catching movements, because in the model movement commands are only generated in the direction perpendicular to the gaze direction. Twelve participants caught balls while gazing at a fixation point positioned either straight ahead or 14 degrees to the right. Four participants were excluded because they could not adequately maintain fixation. We again observed a consistent leftward movement bias, but the catching movements were unaffected by fixation direction. This result refutes our proposal that the leftward bias partly arises within the visuomotor transformation, and suggests instead that the bias predominantly arises within the early representation of target motion, specifically through an imbalance in the represented radial and azimuthal target motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION:

Dorsally displaced fractures of the distal radius fractures are one of the commonest in day-to-day practice. There is still no consensus among surgeons regarding the suitability of using volar or the dorsal cortex as basis for internal fixation for dorsally displaced fractures.

BACKGROUND:

We report an anatomical study, which compares the thickness of the volar and dorsal cortices of cadaveric adult radii using digital photography.

RESULTS:

Results of this study show that the volar cortex was statistically, significantly thicker than the dorsal cortex. We believe that the volar cortex may behave as the calcar of the distal radius and hence internal fixation devices applied to the volar cortex may provide a more stable internal fixation compared to those based on the dorsal cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propionibacterium acnes and coagulase-negative staphylococci (CoNS) are opportunistic pathogens implicated in prosthetic joint and fracture fixation device-related infections. The purpose of this study was to determine whether P. acnes and the CoNS species Staphylococcus lugdunensis, isolated from an "aseptically failed" prosthetic hip joint and a united intramedullary nail-fixed tibial fracture, respectively, could cause osteomyelitis in an established implant-related osteomyelitis model in rabbits in the absence of wear debris from the implant material. The histological features of P. acnes infection in the in vivo rabbit model were consistent with localized pyogenic osteomyelitis, and a biofilm was present on all explanted intramedullary (IM) nails. The animals displayed no outward signs of infection, such as swelling, lameness, weight loss, or elevated white blood cell count. In contrast, infection with S. lugdunensis resulted in histological features consistent with both pyogenic osteomyelitis and septic arthritis, and all S. lugdunensis-infected animals displayed weight loss and an elevated white blood cell count despite biofilm detection in only two out of six rabbits. The differences in the histological and bacteriological profiles of the two species in this rabbit model of infection are reflective of their different clinical presentations: low-grade infection in the case of P. acnes and acute infection for S. lugdunensis. These results are especially important in light of the growing recognition of chronic P. acnes biofilm infections in prosthetic joint failure and nonunion of fracture fixations, which may be currently reported as "aseptic" failure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.