55 resultados para MALIGNANCY
Resumo:
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.
Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.
Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.
Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK
Resumo:
Malignant pleural mesothelioma (MPM) is a highly pro-inflammatory malignancy that is rapidly fatal and increasing in incidence. Cytokine signaling within the pro-inflammatory tumor microenvironment makes a critical contribution to the development of MPM and its resistance to conventional chemotherapy approaches. SMAC mimetic compounds (SMCs) are a promising class of anticancer drug that are dependent on tumor necrosis factor alpha (TNFa) signaling for their activity. As circulating TNFa expression is significantly elevated in MPM patients, we examined the sensitivity of MPM cell line models to SMCs. Surprisingly, all MPM cell lines assessed were highly resistant to SMCs either alone or when incubated in the presence of clinically relevant levels of TNFa. Further analyses revealed that MPM cells were sensitized to SMC-induced apoptosis by siRNA-mediated downregulation of the caspase 8 inhibitor FLIP, an antiapoptotic protein overexpressed in several cancer types including MPM. We have previously reported that FLIP expression is potently downregulated in MPM cells in response to the histone deacetylase inhibitor (HDACi) Vorinostat (SAHA). In this study, we demonstrate that SAHA sensitizes MPM cells to SMCs in a manner dependent on its ability to downregulate FLIP. Although treatment with SMC in the presence of TNFa promoted interaction between caspase 8 and the necrosis-promoting RIPK1, the cell death induced by combined treatment with SAHA and SMC was apoptotic and mediated by caspase 8. These results indicate that FLIP is a major inhibitor of SMC-mediated apoptosis in MPM, but that this inhibition can be overcome by the HDACi SAHA. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
AIMS/HYPOTHESIS:
A previous study in Dutch dialysis patients showed no survival difference between patients with diabetes as primary renal disease and those with diabetes as a co-morbid condition. As this was not in line with our hypothesis, we aimed to verify these results in a larger international cohort of dialysis patients.
METHODS:
For the present prospective study, we used data from the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry. Incident dialysis patients with data on co-morbidities (n?=?15,419) were monitored until kidney transplantation, death or end of the study period (5 years). Cox regression was performed to compare survival for patients with diabetes as primary renal disease, patients with diabetes as a co-morbid condition and non-diabetic patients.
RESULTS:
Of the study population, 3,624 patients (24%) had diabetes as primary renal disease and 1,193 (11%) had diabetes as a co-morbid condition whereas the majority had no diabetes (n?=?10,602). During follow-up, 7,584 (49%) patients died. In both groups of diabetic patients mortality was higher compared with the non-diabetic patients. Mortality was higher in patients with diabetes as primary renal disease than in patients with diabetes as a co-morbid condition, adjusted for age, sex, country and malignancy (HR 1.20, 95% CI 1.10, 1.30). An analysis stratified by dialysis modality yielded similar results.
CONCLUSIONS/INTERPRETATION:
Overall mortality was significantly higher in patients with diabetes as primary renal disease compared with those with diabetes as a co-morbid condition. This suggests that survival in diabetic dialysis patients is affected by the extent to which diabetes has induced organ damage.
Resumo:
Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase-and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH 2-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 a-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
Background: Barrett's oesophagus (BO) is a well recognized precursor of the majority of cases of oesophageal adenocarcinoma (OAC). Endoscopic surveillance of BO patients is frequently undertaken in an attempt to detect early OAC, high grade dysplasia (HGD) or low grade dysplasia (LGD). However histological interpretation and grading of dysplasia is subjective and poorly reproducible. The alternative flow cytometry and cytology-preparation image cytometry techniques require large amounts of tissue and specialist expertise which are not widely available for frontline health care.
Methods: This study has combined whole slide imaging with DNA image cytometry, to provide a novel method for the detection and quantification of abnormal DNA contents. 20 cases were evaluated, including 8 Barrett's specialised intestinal metaplasia (SIM), 6 LGD and 6 HGD. Feulgen stained oesophageal sections (1µm thickness) were digitally scanned in their entirety and evaluated to select regions of interests and abnormalities. Barrett’s mucosa was then interactively chosen for automatic nuclei segmentation where irrelevant cell types are ignored. The combined DNA content histogram for all selected image regions was then obtained. In addition, histogram measurements, including 5c exceeding ratio (xER-5C), 2c deviation index (2cDI) and DNA grade of malignancy (DNA-MG), were computed.
Results: The histogram measurements, xER-5C, 2cDI and DNA-MG, were shown to be effective in differentiating SIM from HGD, SIM from LGD, and LGD from HGD. All three measurements discriminated SIM from HGD cases successfully with statistical significance (pxER-5C=0.0041, p2cDI=0.0151 and pDNA-MG=0.0057). Statistical significance is also achieved differentiating SIM from LGD samples with pxER-5C=0.0019, p2cDI=0.0023 and pDNA-MG=0.0030. Furthermore the differences between LGD and HGD cases are statistical significant (pxER-5C=0.0289, p2cDI=0.0486 and pDNA-MG=0.0384).
Conclusion: Whole slide image cytometry is a novel and effective method for the detection and quantification of abnormal DNA content in BO. Compared to manual histological review, this proposed method is more objective and reproducible. Compared to flow cytometry and cytology-preparation image cytometry, the current method is low cost, simple to use and only requires a single 1µm tissue section. Whole slide image cytometry could assist the routine clinical diagnosis of dysplasia in BO, which is relevant for future progression risk to OAC.
Resumo:
Introduction: Antigenic stimulation is a proposed aetiologic mechanism for many haematological malignancies. Limited evidence suggests that community-acquired infections may increase the risk of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). However, associations with other myeloid malignancies including chronic myeloid leukaemia (CML) and myeloproliferative neoplasms (MPNs) are unknown.
Materials and methods: Using the Surveillance, Epidemiology and End Result (SEER)-Medicare database, fourteen community-acquired infections were compared between myeloid malignancy patients [AML (n=8489), CML (n=3626) diagnosed 1992-2005; MDS (n=3072) and MPNs (n=2001) diagnosed 2001-2005; and controls (200,000 for AML/CML and 97,681 for MDS/MPN]. Odds ratios (ORs) and 95% confidence intervals were adjusted for gender, age and year of selection excluding infections diagnosed in the 13-month period prior to selection to reduce reverse causality.
Results: Risk of AML and MDS respectively, were significantly associated with respiratory tract infections, bronchitis (ORs 1.20 [95% CI: 1.14-1.26], 1.25 [95% CI: 1.16-1.36]), influenza (ORs 1.16 [95% CI: 1.07-1.25], 1.29 [95% CI: 1.16-1.44]), pharyngitis (ORs 1.13 [95% CI: 1.06-1.21], 1.22 [95% CI: 1.11-1.35]), pneumonia (ORs 1.28 [95% CI: 1.21-1.36], 1.52 [95% CI: 1.40-1.66]), sinusitis (ORs 1.23 [95% CI: 1.16-1.30], 1.25 [95% CI: 1.15-1.36]) as was cystitis (ORs 1.13 [95% CI: 1.07-1.18], 1.26 [95% CI: 1.17-1.36]). Cellulitis (OR 1.51 [95% CI: 1.39-1.64]), herpes zoster (OR 1.31 [95% CI: 1.14-1.50]) and gastroenteritis (OR 1.38 [95% CI: 1.17-1.64]) were more common in MDS patients than controls. For CML, associations were limited to bronchitis (OR 1.21 [95% CI: 1.12-1.31]), pneumonia (OR 1.49 [95% CI: 1.37-1.62]), sinusitis (OR 1.19 [95% CI: 1.09-1.29]) and cellulitis (OR 1.43 [95% CI: 1.32-1.55]) following Bonferroni correction. Only cellulitis (OR 1.34 [95% CI: 1.21-1.49]) remained significant in MPN patients. Many infections remained elevated when more than 6 years of preceding claims data were excluded.
Discussion: Common community-acquired infections may be important in the malignant transformation of the myeloid lineage. Differences in the aetiology of classic MPNs and other myeloid malignancies require further exploration.
Resumo:
Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.
Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.
Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.
Resumo:
Purpose: To compare the effectiveness of fine needle aspiration cytology (FNAC) with core biopsy (CB) in the pre-operative diagnosis of radial scar (RS) of the breast.
Patients and methods: A retrospective analysis was made of all radial scars diagnosed on surgical histology over an 8-year period. Comparison was made between the results of different preoperative needle biopsy techniques and surgical histology findings.
Results: Forty of 47 patients with a preoperative radiological diagnosis of radial scar were included in this analysis. Thirty-eight patients had impalpable lesions diagnosed on mammography and two presented with a palpable lump. FNAC (n=17) was inadequate in 47% of patients, missed two co-existing carcinomas found in this group, and gave a false positive or suspicious result for malignancy in 4 patients. CB (n=23) suggested a RS in 15 patients, but only diagnosed 4 out of 7 co-existing carcinomas found in this group.
Conclusion: CB is more accurate than FNAC in the diagnosis of RS. However, these data demonstrate that CB may offer little to assist in the management of patients with RS. In summary, this paper advocates the use of CB in any lesion with a radiological suspicion of carcinoma and diagnostic excision of all lesions thought to be typical of RS on mammography.
Resumo:
Background: More effective treatments have become available for haematological malignancies from the early 2000s, but few large-scale population-based studies have investigated their effect on survival. Using EUROCARE data, and HAEMACARE morphological groupings, we aimed to estimate time trends in population-based survival for 11 lymphoid and myeloid malignancies in 20 European countries, by region and age. Methods: In this retrospective observational study, we included patients (aged 15 years and older) diagnosed with haematological malignancies, diagnosed up to Dec 31, 2007, and followed up to Dec 31, 2008. We used data from the 30 cancer registries (across 20 countries) that provided continuous incidence and good quality data from 1992 to 2007. We used a hybrid approach to estimate age-standardised and age-specific 5-year relative survival, for each malignancy, overall and for five regions (UK, and northern, central, southern, and eastern Europe), and four 3-year periods (1997–99, 2000–02, 2003–05, 2006–08). For each malignancy, we also estimated the relative excess risk of death during the 5 years after diagnosis, by period, age, and region. Findings: We analysed 560 444 cases. From 1997–99 to 2006–08 survival increased for most malignancies: the largest increases were for diffuse large B-cell lymphoma (42·0% [95% CI 40·7–43·4] to 55·4% [54·6–56·2], p<0·0001), follicular lymphoma (58·9% [57·3–60·6] to 74·3% [72·9–75·5], p<0·0001), chronic myeloid leukaemia (32·3% [30·6–33·9] to 54·4% [52·5–56·2], p<0·0001), and acute promyelocytic leukaemia (50·1% [43·7–56·2] to 61·9% [57·0–66·4], p=0·0038, estimate not age-standardised). Other survival increases were seen for Hodgkin's lymphoma (75·1% [74·1–76·0] to 79·3% [78·4–80·1], p<0·0001), chronic lymphocytic leukaemia/small lymphocytic lymphoma (66·1% [65·1–67·1] to 69·0% [68·1–69·8], p<0·0001), multiple myeloma/plasmacytoma (29·8% [29·0–30·6] to 39·6% [38·8–40·3], p<0·0001), precursor lymphoblastic leukaemia/lymphoma (29·8% [27·7–32·0] to 41·1% [39·0–43·1], p<0·0001), acute myeloid leukaemia (excluding acute promyelocytic leukaemia, 12·6% [11·9–13·3] to 14·8% [14·2–15·4], p<0·0001), and other myeloproliferative neoplasms (excluding chronic myeloid leukaemia, 70·3% [68·7–71·8] to 74·9% [73·8–75·9], p<0·0001). Survival increased slightly in southern Europe, more in the UK, and conspicuously in northern, central, and eastern Europe. However, eastern European survival was lower than that for other regions. Survival decreased with advancing age, and increased with time only slightly in patients aged 75 years or older, although a 10% increase in survival occurred in elderly patients with follicular lymphoma, diffuse large B-cell lymphoma, and chronic myeloid leukaemia. Interpretation: These trends are encouraging. Widespread use of new and more effective treatment probably explains much of the increased survival. However, the persistent differences in survival across Europe suggest variations in the quality of care and availability of the new treatments. High-resolution studies that collect data about stage at diagnosis and treatments for representative samples of cases could provide further evidence of treatment effectiveness and explain geographic variations in survival.
Resumo:
The proinflammatory cytokine macrophage migration inhibitory factor (MIF) stimulates tumor cell proliferation, migration, and metastasis; promotes tumor angiogenesis; suppresses p53-mediated apoptosis; and inhibits antitumor immunity by largely unknown mechanisms. We here describe an overexpression of MIF in ovarian cancer that correlates with malignancy and the presence of ascites. Functionally, we find that MIF may contribute to the immune escape of ovarian carcinoma by transcriptionally down-regulating NKG2D in vitro and in vivo which impairs NK cell cytotoxicity toward tumor cells. Together with the additional tumorigenic properties of MIF, this finding provides a rationale for novel small-molecule inhibitors of MIF to be used for the treatment of MIF-secreting cancers.
Resumo:
The myeloproliferative neoplasms, are characterised by overproduction of myeloid cells. Chronic myeloid leukaemia, polycythaemia vera, essential thrombocythaemia, myelofibrosis and the very rare disorders chronic neutrophilic leukaemia, chronic eosinophilic leukaemia not otherwise specified and mastocytosis are all included in the group. Incidence and prevalence rates reported in the worldwide literature are presented in this review. Survival data on each condition is described. Information on the aetiology of the disorders is discussed including body mass index, diet, smoking and alcohol, allergies, associated medical conditions, occupation and environmental exposures with focus on recent new studies. The aetiology of the myeloproliferative neoplasms remains unknown, and this review of the current state of knowledge highlights the need for further comprehensive research.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting therapeutic response.
Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [Furlong et al., 2012 PMID:22069160] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vitro, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.
To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433, or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence, exemplified by a flattened morphology and down-regulation of phosphorylated Retinoblastoma (p-Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.
In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting response to standard treatment.
Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [1] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vito, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.
To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433 or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence resulting in a chracteristic flattened morphology and down-regulation of phosphorylated Retinoblastoma (p Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.
In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.
Resumo:
Ovarian cancer is the most lethal gynecological malignancy, primarily because its origin and initiation factors are unknown. A secretory murine oviductal epithelial (MOE) model was generated to address the hypothesis that the fallopian tube is an origin for high-grade serous cancer. MOE cells were stably altered to express mutation in p53, silence PTEN, activate AKT, and amplify KRAS alone and in combination, to define if this cell type gives rise to tumors and what genetic alterations are required to drive malignancy. Cell lines were characterized in vitro and allografted into mice. Silencing PTEN formed high-grade carcinoma with wide spread tumor explants including metastasis into the ovary. Addition of p53 mutation to PTEN silencing did not enhance this phenotype, whereas addition of KRAS mutation reduced survival. Interestingly, PTEN silencing and KRAS mutation originating from ovarian surface epithelium generated endometrioid carcinoma, suggesting that different cellular origins with identical genetic manipulations can give rise to distinct cancer histotypes. Defining the roles of specific signaling modifications in tumorigenesis from the fallopian tube/oviduct is essential for early detection and development of targeted therapeutics. Further, syngeneic MOE allografts provide an ideal model for pre-clinical testing in an in vivo environment with an intact immune system.