45 resultados para M48 (Tank)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screw conveyor system plays a fundamental role during the EPB tunnelling operations for the tunnel face pressure control. On the other hand, the use of additives such chemical foams is even more applied in order to extend the EPB technology to the cohesionless soils. Despite the extensive use of the EPB technique in urban environment, little knowledge exists in the understanding of the behavior of such conditioned soil during the excavation operations. At the Turin University of Technology the Tunnelling and Underground Space Centre, in the mainframe of a wider research on soil conditioning, has developed an experimental apparatus that simulates the extraction phase with screw conveyor from a pressurized tank. In this paper the apparatus is presented and the results of a first series of tests carried out on sand are discussed. © 2007 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Biospheric Project is a nested multi-scalar urban agriculture project that aims to develop sustainable food systems in disadvantaged communities, though not only physical interventions, such as the urban masterplan and neighbourhood design to the building and its roof and façade, but also through social and commercial interventions, such as community involvement, businesses and a distribution system.

The project is focused around the Biospheric Foundation, a community interest company and research think-tank whose aim is to hasten our transition to a closed cycle, low-carbon economy. Its home is Irwell house, that houses a large-scale aquaponic-based food production system, which is directly linked to a whole-food shop (78 Steps, named after the distance from the productive system) and a whole food distribution system (the Whole Box). The building sits within a post-industrial landscape which is being developed into a new productive landscape, utilizing the the technologies developed by the Biospheric Foundation and Prof Greg Keeffe of Queens University Belfast. The collaboration links designer, academics and activists across the disciplines of Urban design, Architecture, Permaculture, landscape design, environmental science and business and community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.

An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.

The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.

With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.

The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.

A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.

The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flaptype wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abrasion damage on retrieved CoCrMo based hip joints is reported to be influenced by the entrainment of micron and sub-micron sized debris/hard particles. This paper represents the first attempt to look into the effects of relatively soft abrasives with micron and sub-micron dimensions on the abrasion mechanisms and the abrasion-corrosion performance of the cast CoCrMo in simulated hip joint environments. A modified micro-abrasion tester incorporating a liquid tank and a three-electrode electrochemical cell was used. Al O (300 nm and 1 μm) and sub-micron sized BaSO abrasives were chosen as being comparable in the size and hardness to the wear particles found in vivo. Results show that the specific wear rates of cast CoCrMo are dependent on the abrasive particle size, hardness and volume concentration. Larger particle size, higher hardness and greater abrasive volume fractions gave greater wear rates. The wear-induced corrosion current generally increases with increasing wear rates, and the presence of proteins seems to suppress the wear-induced corrosion current especially when abrasive volume fractions were high. This study shows that the nature of abrasives and the test solutions are both important in determining the wear mechanisms and the abrasion-corrosion response of cast CoCrMo. These findings provide new and important insights into the in vivo wear mechanisms of CoCrMo. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large loads result in expensive foundations which are a substantial proportion of the capital cost of flap-type Wave Energy Converters (WECs). Devices such as Oyster 800, currently deployed at the European Marine Energy Centre (EMEC), comprise a single flap for the full width of the machine. Splitting a flap-type device into smaller vertical flap modules, to make a ‘modular-flap’, might reduce the total foundation loads, whilst still providing acceptable performance in terms of energy conversion.
This paper investigates the foundation loads of an undamped modular-flap device, comparing them to those for a rigid flap of an equivalent width. Physical modelling in a wave tank is used, with loads recorded using a six degree of freedom (DoF) load cell. Both fatigue and extreme loading analysis was conducted. The rotations of the flaps were also recorded, using a motion-tracking system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade, the common rock shrimp, Rhynchocinetes typus H. Milne Edwards, 1837, has been the focus of extensive investigations on mating behaviour. The species is now perceived as a model system for the study of reproductive strategies and sexual conflict in crustaceans displaying external fertilization. Using molecular markers, the current study assesses whether social mating behaviour in common rock shrimp translates into true genetic parentage. In a large mesocosm tank with >200 individuals of both sexes, the analysis of 15 families (22 eggs per female) for three informative microsatellites unambiguously confirmed multiple paternity in 11 instances (73%) involving, in each case, two to four males. Where more than one male was identified siring a particular brood, reproductive skew was apparent towards a single individual. Results suggest that multiple paternity in this species results from subordinate male coercive behaviour, female solicitation of multiple male matings or a combination of both.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical methods have enabled the simulation of complex problems in off-shore and marine engineering. A significant challenge in these simulations is the creation of a realistic wave field. A good numerical tank requires wave creation and absorption of waves at various locations. Several numerical wavemakers with these capabilities have been presented in the past. This paper reviews four different wave-maker methods and discusses limitations, computational efficiency, requirements on the mesh and preprocessing and complexity of implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic noise can affect behaviour across a wide range of species in both terrestrial and aquatic environments. However, behaviours might not be affected in isolation. Therefore, a more holistic approach investigating how environmental stressors, such as noise pollution, affect different behaviours in concert is necessary. Using tank-based noise exposure experiments, we tested how changes in the acoustic environment affect the behaviour of the cichlid Amatitlania nigrofasciata. We found that exposure to anthropogenic noise affected a couple of behaviours: an increase in sheltering was accompanied by a decrease in foraging. Our results highlight the multiple negative effects of an environmental stressor on an individual's behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research has shown that higher ambient turbulence leads to better wake recovery, so turbines could be installed in closer proximity in real tidal flows than might be assumed from typical towing tank tests that do not take into account turbulent inflow conditions. The standard tools to assess flow velocities in field conditions are Doppler based sonar devices, such as Acoustic Doppler Profilers (ADPs) or Acoustic Doppler Velocimeters (ADVs). The use of these devices poses some challenges when assessing the wake of a tidal turbine. While ADPs allow the three-dimensional measurement of a velocity profile over a distance, the data is calculated as a mean of three diverging beams and with low temporal resolution. ADVs can measure with higher sampling frequency but only at a single point in the flow. During the MaRINET testing of the SCHOTTELSIT turbine at the QUB tidal test site in Portaferry, Northern Ireland, ADP and ADV measurements were successfully tested.Two methods were employed for measuring the wake: firstly, with a rigidly mounted ADP and secondly, with a submerged ADV which was streamed behind the turbine. This paper presents the experimental set-up and results and discusses limitations and challenges of the two methods used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full understanding of the hydrodynamic processes within the jet produced by a manoeuvring ship’s propeller is essential in the development and maintenance of ports, docks and harbours. In this study the predominant axial velocity component of a diffusing propeller jet was studied. The flow fields formed by four propellers, each operating at four power levels (speeds of rotation), were investigated under bollard pull conditions within a large free surface tank using Laser Doppler Anemometry. Comparison were made to existing methodologies by which a prediction of the magnitudes of the axial velocity can be made, and where deficient modifications to the methodologies have been developed. The jets were found to produce a maximum axial velocity along the initial efflux plane at a location near the blade mid-span. The position and magnitude of the axial velocity was seen to decrease as the jet entrained more flow and transitioned from the zone of flow establishment into the zone of established flow.