61 resultados para Lysine in animal nutrition
Resumo:
In animal contests, individuals can either engage in mutual assessment of both their own and their opponent's resource-holding potential (RHP) and adjust their behaviour according to estimated differences, or instead persist in accordance with thresholds determined by assessment of just their own RHP. We examined the predictions of alternative mutual assessment and self-assessment models for decision rules in contest resolution during struggles between males over females in precopula in the amphipod Gammarus pulex. Contest duration was positively related to the weight of the loser but not the weight of the winner. Our results support the hypothesis that males rely on information about their own RHP in determining contest behaviour and do not use information about their opponent. Fighting was energetically costly, and energy reserves were depleted during contests. Contest duration was associated with the physiological state of the loser (but not the winner) at the end of the contest, and to a lesser extent his size, further supporting self-assessment. (c) 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chloramphenicol (CAP), a broad-spectrum antibiotic, was detected in several herb and grass samples from different geographic origins. Due to its suspected carcino-genicity and linkages with the development of aplastic anemia in humans, CAP is banned for use in food-producing animals in the European Union (EU) and many other countries. However, products of animal origin originating from Asian countries entering the European market are still found noncompliant (containing CAP) on a regular basis, even when there is no history of chloramphenicol use in these countries. A possible explanation for the continued detection of these residues is the natural occurrence of CAP in plant material which is used as animal feed, with the consequent transfer of the substance to the animal tissues. Approximately 110 samples were analyzed using liquid chromatography coupled with mass spectrometric detection. In 26 samples, the presence of CAP was confirmed using the criteria for banned substances defined by the EU. Among other plant materials, samples of the Artemisia family retrieved from Mongolia and from Utah, USA, and a therapeutic herb mixture obtained from local stores in the Netherlands proved to contain CAP at levels ranging from 0.1 to 450 mu g/kg. These findings may have a major impact in relation to international trade and safety to the consumer. The results of this study demonstrate that noncompliant findings in animal-derived food products may in part be due to the natural occurrence of chloramphenicol in plant material. This has implications for the application of current EU, USA, and other legislation and the interpretation of analytical results with respect to the consideration of CAP as a xenobiotic veterinary drug residue and the regulatory actions taken upon its detection in food.
Resumo:
Since the introduction of the European ban on hormones in 1989, its implementation has proved to be an enormous challenge to regulatory authorities, because the great economic benefits that result from illegal misuse of growth promoters in animal production encourage their continued use. In efforts to challenge black-market trade in hormones, there have been many analytical advances. Recently, both effect-based bioanalysis for screening to target illegal misuse and improved mass-spectrometry-based confirmatory analysis have greatly increased the likelihood of detecting hormone abuse. This review outlines analytical methods currently used for detecting hormone abuse and presents advances in new approaches based on biological determinants that may complement these techniques in the future. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
During early neurodevelopment, asymmetric segregation of Numb in mitotic progenitor cells influences the fate of daughter cells, whereby one daughter retains the progenitor phenotype while the other proceeds along a differentiation pathway. Numb has also been reported to function as a tumor suppressor in breast cancers and medulloblastomas. Given its role in maintaining neural progenitor pools in animal models and its reported role as a tumor suppressor, Numb could potentially contribute to astrocytoma oncogenesis. We characterized Numb expression in both human astrocytoma tissue samples and glioblastoma cell lines. We found that Numb is expressed in all grades of astrocytomas, being predominantly cytoplasmic in higher-grade astrocytomas but nuclear in pilocytic astrocytomas. Numb is also present in normal neurons, but not in normal astrocytes. In cultured glioblastoma cells, Numb concentrates in the perinuclear region and process tips. Numb expression in astrocytomas recapitulates that of progenitor cells during neurodevelopment, and suggests a role for Numb in astrocytoma oncogenesis.
Resumo:
Avermectins are frequently used to control parasitic infestations in many animal species. Previous studies have shown the long-term persistence of unwanted residues of these drugs in animal tissues and fluids. An immunoassay screening test for the detection acid quantification of ivermectin residues in bovine milk has been developed. After an extensive extraction procedure, milk samples were applied to a competitive dissociation-enhanced lanthanide fluoroimmunoassay using a monoclonal antibody against an ivermectin-transferrin conjugate, The monoclonal antibody, raised in Balb C mice, showed cross-reactivity with eprinomectin (92%), abamectin (82%) and doramectin (16%). The limit of detection of the assay (mean + 3 SD), calculated from the analysis of 17 known negative samples, was calculated as 4.6 ng/mL. Intra- and inter-assay RSDs were determined as 11.6% and 15.8%, respectively, using a negative bovine milk sample fortified with 25 ng/mL ivermectin. Six Friesian milking cows were treated with ivermectin, three with a pour-on formulation of the drug and three with an injectable solution at the manufacturer's recommended dose rate. An initial mean peak in ivermectin residue concentration was detected at day 4 (mean level = 47.5 ng/mL) and day 5 post-treatment (mean level = 26.4 ng/mL) with the injectable form and pour-on treatment, respectively. A second peak in residue concentration was observed using the DELFIA(R) procedure 28 days post-treatment in both treatment groups (23.1 ng/mL injectable and 51.9 ng/mL pour-on). These second peaks were not confirmed by HPLC and must at this Lime be considered to be false-positive results. By day 35 after treatment the mean ivermectin residue concentration of both groups fell below the limit of detection of the assay. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The use of the beta-agonist clenbuterol (CBL) as a growth promoter has been outlawed in European meat production. The detection of its illegal use is dependent on CBL residues persisting in animal tissues for longer than the withdrawal times given by abusers. A comparison of urine, bile and liver matrices indicated that analysis of the liver offered the best possibility for CBL detection. However, an experimental study showed that CBL detection following withdrawal could be further extended (up to 56 d) if the retina was used as the target tissue. Analysis of 703 retina and liver samples from cattle suspected of CBL medication revealed that 96 cattle had CBL residues present in their retinas, only 46 of these were liver positive. There were no instances of liver CBL residues being detected without the associated retina also being positive.
Resumo:
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl) benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phen-cyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl) phenyl) methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl) ethynyl) nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.
Resumo:
Use of nitrofuran drugs in food-producing animals has been prohibited within the EU because they may represent a public health risk. Monitoring compliance with the ban has focused on the detection of protein-bound nitrofuran metabolites which, in contrast to the parent compounds, are stable and persist in animal tissues. As part of the "FoodBRAND" project, an extensive survey of pork was undertaken across 15 European countries. Samples (n = 1500) purchased at retail outlets were analysed for the nitrofuran metabolites AOZ, AMOZ, AHD and SEM using LC-MS/MS determination of nitrobenzaldehyde derivatives. Limits of quantification for the method were 0.1 mug/kg (AOZ, AMOZ), 0.2 mug/kg (SEM) and 0.5 mug/kg (AHD). Of the 1500 samples tested, measurable residues of nitrofuran metabolites were confirmed in 12 samples (0.8% incidence overall) of which 10 samples were purchased in Portugal (AOZ, 0.3 mug/kg; AMOZ, 0.2-0.6 mug/kg) and one sample each in Italy (AMOZ, 1.0 mug/kg) and Greece (AOZ, 3.0 mug/kg). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ischemia-reperfusion (I/R) injury causes skeletal muscle infarction and ischemic preconditioning (IPC) augments ischemic tolerance in animal models. To date, this has not been demonstrated in human skeletal muscle. This study aimed to develop an in vitro model to investigate the efficacy of simulated IPC in human skeletal muscle. Human skeletal muscle strips were equilibrated in oxygenated Krebs-Henseleit-HEPES buffer (37 degrees C). Aerobic and reperfusion phases were simulated by normoxic incubation and reoxygenation, respectively. Ischemia was simulated by hypoxic incubation. Energy store, cell viability, and cellular injury were assessed using ATP, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays, respectively. Morphological integrity was assessed using electron microscopy. Studies were designed to test stability of the preparation (n = 5-11) under normoxic incubation over 24 h; the effect of 1, 2, 3, 4, or 6 h hypoxia followed by 2 h of reoxygenation; and the protective effect of hypoxic preconditioning (HPC; 5 min of hypoxia/5 min of reoxygenation) before 3 h of hypoxia/2 h of reoxygenation. Over 24 h of normoxic incubation, muscle strips remained physiologically intact as assessed by MTT, ATP, and LDH assays. After 3 h of hypoxia/2 h of reoxygenation, MTT reduction levels declined to 50.1 +/- 5.5% (P <0.05). MTT reduction levels in HPC (82.3 +/- 10.8%) and normoxic control (81.3 +/- 10.2%) groups were similar and higher (P <0.05) than the 3 h of hypoxia/2 h of reoxygenation group (45.2 +/- 5.8%). Ultrastructural morphology was preserved in normoxic and HPC groups but not in the hypoxia/reoxygenation group. This is the first study to characterize a stable in vitro model of human skeletal muscle and to demonstrate a protective effect of HPC in human skeletal muscle against hypoxia/reoxygenation-induced injury.
Resumo:
Macrophage cholesterol homeostasis is a key process involved in the initiation and progression of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) regulate the transcription of the genes involved in cholesterol homeostasis and thus represent an important therapeutic target in terms of reducing atherosclerosis. Conjugated linoleic acid (CLA) is a potent anti-atherogenic dietary fatty acid in animal models of atherosclerosis and is capable of activating PPARs in vitro and in vivo. Therefore, this study examined whether the anti-atherogenic effects of CLA in vivo could be ascribed to altered cholesterol homeostasis in macrophages and macrophage derived foam cells. Of several genes that regulate cholesterol homeostasis investigated, CLA had most effect on the class B scavenger receptor CD36. The cis-9,trans-11 CLA (c9,t11-CLA) and trans-10,cis-12 CLA (t10,c12-CLA) isomers augmented CD36 mRNA expression (P
Resumo:
Background Growth faltering in West African children has previously been associated with dietary exposure to aflatoxins, particularly upon weaning. However, in animal studies in utero exposure to low levels of aflatoxin also results in growth faltering.
Objective This study investigated the effect of in utero aflatoxin exposure on infant growth in the first year of life in The Gambia.
Methods Height and weight were measured for 138 infants at birth and at regular monthly intervals for one year. Aflatoxin-albumin (AF-alb) adduct level was measured in maternal blood during pregnancy, in cord blood and in infants at age 16 weeks.
Results The geometric mean AF-alb levels were 40.4pg/mg (range 4.82-60.8pg/mg), 10.1pg/mg (range 5.01-89.6pg/mg) and 8.7pg/mg (range 5.0-30.2pg/mg) in maternal, cord and infant blood, respectively. AF-alb in maternal blood was a strong predictor of both weight (P = 0.012) and height (P = 0.044) gain, with lower gain in those with higher exposure. A reduction of maternal AF-alb from 110pg/mg to 10pg/mg would lead to a 0.8kg increase in weight and 2cm increase in height within the first year of life.
Conclusions This study shows a strong effect of maternal aflatoxin exposure during pregnancy on growth in the first year of life and thus extends earlier observations of an association between aflatoxin exposure during infancy and growth faltering. The findings imply value in targeting intervention strategies at early life exposures.
Resumo:
The objective of this study was to investigate the inhibitory effect of tea components, tea polyphenols and tea pigments, on precancerous liver lesions in rats. A rat liver precancerous lesion model was established by multiple low-dosage N-nitrosodiethylamine (NDEA) injections, followed by intraperitoneal CCl4 injection and partial hepatectomy (PH). Tea pigments (0.1%) or tea polyphenols (0.1%) were given to Wistar rats in drinking water during the eight weeks of the experiment. The number and area of glutathione S-transferase Pi-positive foci in the rat liver were used as biomarkers of precancerous liver lesions. Western and Northern blot techniques were used to detect rat liver GST-Pi expression at the protein and mRNA levels. At the end of the experiment tea polyphenols and tea pigments significantly decreased the number and area of GST-Pi-positive foci that were overexpressed in the NDEA-CCl4-PH-treated rats compared with the positive control group. The results also showed that GST-Pi mRNA and protein expression increased significantly in the NDEA-CCl4-PH-treated group, which is consistent with the changing of GST-Pi-positive foci. Tea pigments and tea polyphenols had an inhibitory effect on the overexpression of GST-Pi mRNA and protein in NDEA-CCl4-PH-treated rats. These results suggest that tea pigments and tea polyphenols are effective in preventing the occurrence and progression of precancerous liver lesions in rats.
Resumo:
Preterm and critically ill newborns admitted to a NICU undergo repeated skin-breaking procedures that are necessary for their survival. Sucrose is rapidly becoming the accepted clinical standard nonpharmacologic intervention for managing acute procedural pain for these infants. Although shown to be safe in single doses, only 4 studies have evaluated the effects of repeated doses of sucrose over relatively short periods of time. None has examined the use of sucrose throughout the NICU stay, and only 1 study evaluated the neurodevelopmental outcomes after repeated doses of sucrose. In that study, infants born at 10 doses per day in the first week of life were more likely to show poorer attention and motor development in the early months after discharge from the NICU. Results of studies in animal models have suggested that the mechanism of action of sucrose is through opioid pathways; however, in human infants, little has been done to examine the physiologic mechanisms involved, and the findings reported thus far have been ambiguous. Drawing from the growing animal literature of research that has examined the effects of chronic sugar exposure, we describe alternative amine and hormone pathways that are common to the processing of sucrose, attention, and motor development. In addition, a review of the latest research to examine the effects of repeated sucrose on pain processing is presented. These 2 literatures each can inform the other and can provide an impetus to initiate research to examine not only the mechanisms involved in the calming mechanisms of sucrose but also in the long-term neurodevelopmental effects of repeated sucrose in those infants born extremely preterm or critically ill.
Resumo:
Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.