54 resultados para Lithium Storage, Nanotubes, Electrochemical Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The band structure of the intercalation complex of LiTiS has been computed using a semi-empirical tight-binding method and this is compared with the results of a revised TiS calculation. The results obtained confirm that changes in the basic electrical characteristics of TiS, which occur when it is intercalated with lithium, can be attributed to a rigid-band filling of its lowest unoccupied electron states as has previously been proposed. However, they also suggest that intercalation can act to alter the nature and the dispersion of some of the energy bands in the unintercalated crystal. The bands which are most affected by the process are those which derive from orbitals which have the same symmetry as the lithium 2s orbital, namely, the titanium 4s conduction level and the tightly bound sulphur 3s levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper containing MCM-41 materials can be used to both store gaseous nitric oxide and to catalytically produce nitric oxide from nitrite. The active species for the reaction is copper (I). Addition of cysteine to the solution in contact with the material has different effects depending on how much Cu(I) is present. This is a new method of extending the lifetime of gas delivery from a gas storage material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reagent pre-storage in a microfluidic chip can enhance operator convenience, simplify the system design, reduce the cost of storage and shipment, and avoid the risk of cross-contamination. Although dry reagents have long been used in lateral flow immunoassays, they have rarely been used for nucleic acid-based point-of-care (POC) assays due to the lack of reliable techniques to dehydrate and store fragile molecules involved in the reaction. In this study, we describe a simple and efficient method for prolonged on-chip storage of PCR reagents. The method is based on gelification of all reagents required for PCR as a ready-to-use product. The approach was successfully implemented in a lab-on-a-foil system, and the gelification process was automated for mass production. Integration of reagents on-chip by gelification greatly facilitated the development of easy-to-use lab-on-a-chip (LOC) devices for fast and cost-effective POC analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports a comparative study on the performances of two bis[(trifluoromethyl)sulfonyl]imide-based protic (PIL) and aprotic (AIL) ionic liquids, namely, trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide ([HN][TFSI], PIL) and trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide ([S][TFSI], AIL), as mixtures with three molecular solvents: gamma butyrolactone (?-BL), propylene carbonate (PC), and acetonitrile (ACN) as electrolytes for supercapacitor applications. After an analysis of their transport properties as a function of temperature, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements were conducted at 25 and -30 C to investigate the performance of these mixtures as electrolytes for supercapacitors using activated carbon as the electrode material. Surprisingly, for each solvent investigated, no significant differences were observed between the electrolytes based on the PIL and AIL in their electrochemical performance due to the presence or the absence of the labile proton. Furthermore, good specific capacitances were observed in the case of ?-BL-based electrolytes even at low temperature. Capacitances up to 131 and 80 F·g are observed for the case of the [S][TFSI] + ?-BL mixture at 25 and -30 C, respectively. This latter result is very promising particularly for the formulation of new environmentally friendly electrolytes within energy storage systems even at low temperatures. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a method for tailoring local mechanical properties near channel surfaces of vascular structural polymers in order to achieve high structural performance in microvascular systems. While synthetic vascularized materials have been created by a variety of manufacturing techniques, unreinforced microchannels act as stress concentrators and lead to the initiation of premature failure. Taking inspiration from biological tissues such as dentin and bone, these mechanical deficiencies can be mitigated by complex hierarchical structural features near to channel surfaces. By employing electrostatic layer-by-layer assembly (ELbL) to deposit films containing halloysite nanotubes onto scaffold surfaces followed by matrix infiltration and scaffold removal, we are able to controllably deposit nanoscale reinforcement onto 200 micron diameter channel surface interiors in microvascular networks. High resolution strain measurements on reinforced networks under load verify that the halloysite reduces strain concentrations and improves mechanical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scanning probe microscopy methods have been used to electrodeposit and cycle micron-scale Li anodes deposited electrochemically under nanofabricated Au current collectors. An average Li volume of 5 x 10(8) nm(3) was deposited and cycled with 100% coulombic efficiency for similar to 160 cycles. Integrated charge/discharge values agree with before/after topography, as well as in situ dilatometry, suggesting this is a reliable method to study solid-state electrochemical processes. In this work we illustrate the possibility to deposit highly cyclable nanometer thick Li electrodes by mature SPM and nanofab techniques which can pave the way for inexpensive nanoscale battery arrays. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial variability of bias-dependent electrochemical processes on a (La0.5Sr0.5)(2)CoO4 +/- modified (LaxSr1-x)CoO3- surface is studied using first-order reversal curve method in electrochemical strain microscopy (ESM). The oxygen reduction/evolution reaction (ORR/OER) is activated at voltages as low as 3-4 V with respect to bottom electrode. The degree of bias-induced transformation as quantified by ESM hysteresis loop area increases with applied bias. The variability of electrochemical activity is explored using correlation analysis and the ORR/OER is shown to be activated in grains at relatively low biases, but the final reaction rate is relatively small. At the same time, at grain boundaries, the onset of reaction process corresponds to larger voltages, but limiting reactivity is much higher. The reaction mechanism in ESM of mixed electronic-ionic conductor is further analyzed. These studies both establish the framework for probing bias-dependent electrochemical processes in solids and demonstrate rich spectrum of electrochemical transformations underpinning catalytic activity in cobaltites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of addition of reinforcing carbon nanotubes (CNTs) into hydrogenated nitrile-butadiene rubber (HNBR) matrix on the mechanical, dynamic viscoelastic, and permeability properties were studied in this investigation. Different techniques of incorporating nanotubes in HNBR were investigated in this research. The techniques considered were more suitable for industrial preparation of rubber composites. The nanotubes were modified with different surfactants and dispersion agents to improve the compatibility and adhesion of nanotubes on the HNBR matrix. The effects of the surface modification of the nanotubes on various properties were examined in detail. The amount of CNTs was varied from 2.5 to 10 phr in different formulations prepared to identify the optimum CNT levels. A detailed analysis was made to investigate the morphological structure and mechanical behavior at room temperature. The viscoelastic behavior of the nanotube filler elastomer was studied by dynamic mechanical thermal analysis (DMTA). Morphological analysis indicated a very good dispersion of the CNTs for a low nanotube loading of 3.5 phr. A significant improvement in the mechanical properties was observed with the addition of nanotubes. DMTA studies revealed an increase in the storage modulus and a reduction in the glass-transition temperature after the incorporation of the nanotubes. Further, the HNBR/CNT nanocomposites were subjected to permeability studies. The studies showed a significant reduction in the permeability of nitrogen gas. Copyright © 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OCn][Sal]) with n = 3–11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,

&lt;img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif"&gt;PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP; bis(trifluoromethylsulfonyl)imide, TFSI) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.