83 resultados para Liquid-phase sintering


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-ditert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butyl benzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents a solid-phase PCR (SP-PCR) for rapid detection, identification, and sub-typing of various Salmonella species, the major food-borne cause of salmonellosis. The target DNA is firstly amplified with PCR primers (one primer is labeled with fluorophores) in the liquid phase. Simultaneously on the solid phase, the amplified PCR amplicons interact with the nested DNA probes immobilized on the solid substrate as an array. If the immobilized probes match the sequence of the DNA templates they are extended by the polymerase and serve as template for the second strand elongation primed by the liquid phase primer thus generating new templates for the SP-PCR. After the reaction, PCR products labeled with fluorophores remain attached to the substrate and can be visualized directly by fluorescence readout devices. Using this method, S. enteritidis, S. typhimurium and S. dublin can be detected at the same time. The method offers several advantages over conventional multiplex PCR: less competition between different primer pairs thus increasing multiplexing capability, only single wavelength optical readout needed for the multiplexing detection, and less time-consuming owing to reduction of the post-PCR gel electrophoresis. The method will be useful for development of point-of-care devices for rapid detection and identification of Salmonella spp. A solid-phase PCR for rapid detection and identification of S. enteritidis, S. typhimurium and S. dublin is developed. The method offers advantages such as better multiplexing capability, only single wavelength optical readout needed, and less time-consuming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An acid-functionalized ionic liquid was entrapped within a silica gel to yield a recyclable liquid phase catalyst for the dehydration of rac-1-phenyl ethanol. Hot filtration tests showed that the activity was within the gel. Comparison with an analogous SILP system revealed fundamental differences in the properties and behavior of the materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper outlines the effects of polymer conditioning on alum sludge properties, such as floc size, density, fractal dimension (DF) and rheological properties. Experimental results demonstrate that polymer conditioning of alum sludge leads to: larger floc size with a plateau reached in higher doses; higher densities associated with higher doses; increased degree of compactness; and an initial decrease followed by an increase of supernatant viscosity with continued increase in polymer dose. The secondary focus of this paper dwells on a comparison of the estimates of optimum dose using different criteria that emanate from established dewatering tests such as CST, SRF, liquid phase viscosity and modified SRF as well as a simple settlement test in terms of CML30. Alum sludge was derived from a water works treating coloured, low-turbidity raw waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed calculations of the solvation effects on a number of equilibrium constants in water using a recently proposed hybrid quantum classical scheme in which the liquid environment is modelled using classical solvent molecules and the solute electronic structure is computed using modern quantum chemical methods. The liquid phase space is sampled from a fully classical simulation. We find that solvation effects on both triazole tautomeric equilibrium constants and piperidinol conformational equilibrium constants can be interpreted in terms of subtle differences in the local environment which can be seen in probability densities and radial distribution functions. Lower level calculations were performed for comparison and we conclude that the solvation thermodynamics can be predicted from a good classical model of solvent and solute molecules, but the implicit models that we tried are less successful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of PVT measurements of the liquid phase within the temperature range of (298 to 393) K and up to 35 MPa are presented for some aliphatic esters. Measurements were made by means of a vibrating-tube densimeter, model DMA 512P from Anton Parr. The calibration of the densimeter was performed with water and n-heptane as reference fluids. The experimental PVT data have been correlated by a Tait equation. This equation gives excellent results when used to predict the density of the esters using the method proposed by Thomson et al. (AIChE J. 1982, 28, 671-676). Isothermal compressibilities, isobaric expansivities, thermal pressure coefficients, and changes in the isobaric heat capacity have been calculated from the volumetric data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The liquid phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been carried out over a graphite-supported iridium catalyst. The effect of reaction parameters such as temperature, pressure, concentration of reactant, the effect of addition of product to the feed and pre-reduction of the catalyst were studied. In situ pre-reduction of the catalyst with hydrogen had a very significant enhancing effect on the conversion of cinnamaldehyde and selectivity of the catalyst to cinnamyl alcohol. Kinetic analysis of the pre-reduced catalyst showed that the reaction is zero order with respect to cinnamaldehyde and first order with respect to hydrogen. The reaction follows an Arrhenius behaviour with an activation energy of 37 kJ mol(-1). Detailed analysis of the reaction showed that hydrogenation of the C=C double bond to give hydrocinnamaldehyde predominantly occurred at low conversions of cinnamaldehyde (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first thiazolium gold(III) compound that qualifies as an ionic liquid has been prepared and crystallographically characterized. Hydration of phenylacetylene with this compound as catalyst precursor in ionic liquids indicates that gold(Ill)based ionic liquids could serve both as solvents and catalysts for organic transformations. The potential re-use of catalysts is an advantage achieved by recycling the ionic liquid phase. Various imidazolium-derived ionic liquids as well as the new thiazolium compound can be converted into gold carbene complexes by sequential deprotonation and coordination, opening the way for in situ catalyst tailoring. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computational approach to predict the thermodynamics for forming a variety of imidazolium-based salts and ionic liquids from typical starting materials is described. The gas-phase proton and methyl cation acidities of several protonating and methylating agents, as well as the proton and methyl cation affinities of many important methyl-, nitro-, and cyano- substituted imidazoles, have been calculated reliably by using the computationally feasible DFT (B3LYP) and MP2 (extrapolated to the complete basis set limit) methods. These accurately calculated proton and methyl cation affinities of neutrals and anions are used in conjunction with an empirical approach based on molecular volumes to estimate the lattice enthalpies and entropies of ionic liquids, organic solids, and organic liquids. These quantities were used to construct a thermodynamic cycle for salt formation to reliably predict the ability to synthesize a variety of salts including ones with potentially high energetic densities. An adjustment of the gas phase thermodynamic cycle to account for solid- and liquid-phase chemistries provides the best overall assessment of salt formation and stability. This has been applied to imidazoles (the cation to be formed) with alkyl, nitro, and cyano substituents. The proton and methyl cation donors studied were as follows: HCl, HBr, HI, (HO)(2)SO2, HSO3CF3 (TfOH), and HSO3(C6H4)CH3 (TsOH); CH3Cl, CH3Br, CH3I, (CH3O)(2)SO2, CH3SO3CF3 (TfOCH3) and CH3SO3(C6H4)CH3 (TsOCH3). As substitution of the cation with electron-withdrawing groups increases, the triflate reagents appear to be the best overall choice as protonating and methylating agents. Even stronger alkylating agents should be considered to enhance the chances of synthetic success. When using the enthalpies of reaction for the gas-phase reactants (eq 6) to form a salt, a cutoff value of - 13 kcal mol(-1) or lower (more negative) should be used as the minimum value for predicting whether a salt can be synthesized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interfacial tension of the liquid-liquid phase boundary of several 1,3-dialkyl imidazolium based ionic liquids, namely, 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(1)mim][NTf2], 1-ethyl-3-methylimidazoliurn bis{(trifluoromethyl)sulfonyl}imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(4)mim][NTf2], 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(6)mim][NTf2], 1-octyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(8)mim][NTf2], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][CF3SO3], and 1-butyl-3-methylimidazolium trifluoroacetate [C(4)mim][CF3COO] with water and with the n-alkanes, n-hexane, n-octane and n-decane, has been measured using the pendant drop method as a function of temperature from 293 to 323 K. The experimental interfacial tension data were correlated using the ionic liquid parachor estimation method and a mutual solubility model. The influence of the cation and anion of ionic liquids and also of alkyl chain length of n-alkanes on interfacial tension is discussed. It has also been demonstrated that the interfacial tension data estimated by the correlation methods are in good agreement with the experimental data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.