84 resultados para Lipids
Resumo:
Previous research suggests that the digital cushion, a shock-absorbing structure in the claw, plays an important role in protecting cattle from lameness. This study aimed to assess the degree to which nutritional factors influence the composition of the digital cushion. This involved quantifying lipid content and fatty acid composition differences in digital cushion tissue from cattle offered diets with different amounts of linseed. Forty-six bulls were allocated to 1 of 4 treatments, which were applied for an average of 140 +/- 27 d during the finishing period. The treatments consisted of a linseed supplement offered once daily on top of the basal diet (grass silage:concentrate) at 0, 400, 800, or 1,200 g of supplement/animal per day. For each treatment, the concentrate offered was adjusted to ensure that total estimated ME intake was constant across treatments. Target BW at slaughter was 540 kg. Legs were collected in 3 batches after 120, 147 and 185 d on experiment. Six samples of the digital cushion were dissected from the right lateral hind claw of each animal. Lipids were extracted and expressed as a proportion of fresh tissue, and fatty acid composition of the digital cushion was determined by gas chromatography. Data were analyzed by ANOVA, with diet, location within the digital cushion, and their interactions as fixed effects and fat content (grams per 100 g of tissue) as a covariate. Linear or quadratic contrasts were examined. The lipid content of digital cushion tissue differed between sampling locations (P
Resumo:
Red meat from grass-fed animals, compared with concentrate-fed animals, contains increased concentrations of long-chain (LC) n-3 PUPA. However, the effects of red meat consumption from grass-fed animals on consumer blood concentrations of LC n-3 PUFA are unknown. The aim of the present study was to compare the effects on plasma and platelet LC n-3 PUFA status of consuming red meat produced from either grass-fed animals or concentrate-fed animals. A randomised, double-blinded, dietary intervention study was carried out for 4 weeks on healthy subjects who replaced their habitual red meat intake with three portions per week of red meat (beef and lamb) from animals offered a finishing diet of either grass or concentrate (n 20 consumers). Plasma and platelet fatty acid composition, dietary intake, blood pressure, and serum lipids and lipoproteins were analysed at baseline and post-intervention. Dietary intakes of total n-3 PUFA, as well as plasma and platelet concentrations of LC n-3 PUFA, were significantly higher in those subjects who consumed red meat from grass-fed animals compared with those who consumed red meat from concentrate-fed animals (P<0.05). No significant differences in concentrations of serum cholesterol, TAG or blood pressure were observed between groups. Consuming red meat from grass-fed animals compared with concentrate-fed animals as part of the habitual diet can significantly increase consumer plasma and platelet LC n-3 PUFA status. As a result, red meat from grass-fed animals may contribute to dietary intakes of LC n-3 PUFA in populations where red meat is habitually consumed.
Resumo:
Aging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy. We used multiplexed Raman spectroscopy to analyze the age-related changes in 7 proteins, 3 lipids, and 8 advanced glycation/lipoxidation endproducts (AGEs/ALEs) in 63 postmortem human donors. We provided an important database for Raman spectra from a broad range of AGEs and ALEs, each with a characteristic fingerprint. Many of these adducts were shown for the first time in human Bruch's membrane and are significantly associated with aging. The study also introduced the previously unreported up-regulation of heme during aging of Bruch's membrane, which is associated with AGE/ALE formation. Selection of donors ranged from ages 32 to 92 yr. We demonstrated that Raman spectroscopy can identify and quantify age-related changes in a single nondestructive measurement, with potential to measure age-related changes in vivo. We present the first directly recorded evidence of the key role of heme in AGE/ALE formation.
Resumo:
Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.
Resumo:
Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.
Resumo:
Phytoestrogens are plant compounds that have been proposed to have a variety of health benefits. The aim of this study was to assess the effects of these compounds on a number of physiological endpoints. Subjects were given a single intake of a phytoestrogen-rich (80 mg total phytoestrogens) supplement containing soy, rye and linseed (Phase 1), followed by a week-long intervention using the same supplement (Phase 2) (80 mg total phytoestrogens daily). A number of biochemical endpoints were assessed including urinary phytoestrogen metabolites, lipids, antioxidant status, DNA damage and insulin-like growth factor-1 (IGF-1) and IGF binding protein-1 (IGFBP-1) and -3 (IGFBP-3). Ten healthy female subjects took part in the study. Excretion of the isoflavones genistein, daidzein and equol in urine increased in both phases of the study. No other endpoint was altered in Phase 1. However, in Phase 2, concentrations of IGF-1 and IGFBP-3 were increased by phytoestrogen supplementation [IGF-1, median (IQ range), baseline 155 (123, 258), postweek 265 (228, 360) ng/ml, P
Resumo:
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H( P) ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 mug/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI ( GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H( P) ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H( P) ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P) ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.
Resumo:
Cyclooxygenase-2 (Cox-2) and Apo J/clusterin are involved in inflammatory resolution and have each been reported to inhibit NF-?B signalling. Using a well-validated rat pheochromocytoma (PC12) cell culture model of Cox-2 over-expression the current study investigated inter-dependence between Cox-2 and clusterin with respect to induction of expression and impact on NF-?B signalling. Both gene expression and immunoblot analysis confirmed that intracellular and secreted levels of clusterin were elevated in Cox-2 over-expressing cells (PCXII). Clusterin expression was increased in control (PCMT) cells in a time- and dose-dependent manner by 15-deoxy-? 12,14-prostaglandin J 2 (15d-PGJ 2), but not PGE 2, and inhibited in PCXII cells by pharmacological Cox inhibition. In PCXII cells, inhibition of two transcription factors known to be activated by 15d-PGJ 2, heat shock factor 1 (HSF-1) and peroxisome proliferator activated receptor (PPAR)?, by transcription factor oligonucleotide decoy and antagonist (GW9662) treatment, respectively, reduced clusterin expression. While PCXII cells exhibited reduced TNF-a-induced cell surface ICAM-1 expression, IkB phosphorylation and degradation were similar to control cells. With respect to the impact of Cox-2-dependent clusterin upregulation on NF-?B signalling, basal levels of I?B were similar in control and PCXII cells, and no evidence for a physical association between clusterin and phospho-I?B was obtained. Moreover, while PCXII cells exhibited reduced NF-?B transcriptional activity, this was not restored by clusterin knock-down. These results indicate that Cox-2 induces clusterin in a 15d-PGJ 2-dependent manner, and via activation of HSF-1 and PPAR?. However, the results do not support a model whereby Cox-2/15d-PGJ 2-dependent inhibition of NF-?B signalling involves clusterin.
Resumo:
INTRODUCTION:
The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type.
METHODS:
1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value.
RESULTS:
1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes.
CONCLUSION:
The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY.
Resumo:
Raman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age. Here, we describe the sample preparation, data acquisition, signal processing, data analysis and interpretation involved in using Raman spectroscopy for detecting age-related protein modifications in complex biological tissues.
Resumo:
Purpose The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. Methods Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. Results Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. Conclusions This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE.
Resumo:
The spray-congealing technique, a solvent-free drug encapsulation process, was successfully employed to obtain lipid-based particulate systems with high (10–20% w/w) protein loading. Bovine serum albumin (BSA) was utilised as model protein and three low melting lipids (glyceryl palmitostearate, trimirystin and tristearin) were employed as carriers. BSA-loaded lipid microparticles were characterised in terms of particle size, morphology and drug loading. The results showed that the microparticles exhibited a spherical shape, mean diameter in the range 150–300 µm and an encapsulation efficiency higher than 90%. Possible changes in the protein structure as a result of the manufacturing process was then investigated for the first time using UV spectrophotometry in fourth derivative mode and FT-Raman spectroscopy. The results suggested that the structural integrity of the protein was maintained within the particles. Thermal analysis indicated that the effect of protein on the thermal properties of the carriers could be detected. Spray-congealing could thus be considered a suitable technique to produce highly BSA-loaded microparticles preserving the structure of the protein.