148 resultados para Lenclos, Ninon de, 1620-1705
Resumo:
Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.
Resumo:
Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.
Resumo:
The artificial magnetic conductor (AMC) and electromagnetic band gap (EBG) characteristics of planar periodic metallic arrays printed on grounded dielectric substrate are investigated. The currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces. A new technique is presented to tailor the spectral position of the AMC operation and the EBG. Square patch arrays with fixed element size and variable periodicities are employed as working examples to demonstrate the dependence of the spectral AMC and EBG characteristics on array parameters. It is revealed that as the array periodicity is increased, the AMC frequency is increased, while the EBG frequency is reduced. This is shown to occur due to the different nature of the resonance phenomena and the associated underlying physical mechanisms that produce the two effects. The effect of substrate thickness is also investigated. Full wave method of moments (MoM) has been employed for the derivation of the reflection characteristics, the currents and the dispersion relations. A uniplanar array with simultaneous AMC and EBG operation is demonstrated theoretically and experimentally.
Resumo:
It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.
Resumo:
Periodically loaded dipole arrays printed on grounded dielectric substrate are shown to exhibit left-handed propagation properties. In an equivalent transmission line representation, lefthandedness emerges due to the excess series capacitance and shunt inductance. Based on this concept, the authors study the distribution of the modal fields and the variation of series capacitance and shunt inductance as the dipoles are loaded with stubs. Full wave dispersion curves that show the gradual transition from a right-handed to a left-handed medium upon periodically loading the dipoles with stubs are presented. An equivalent circuit is derived that matches to a very good extent the full wave result. The cell dimensions are a small fraction of the wavelength (),15), so the structure can be considered as an equivalent homogeneous surface. The structure is simple, readily scalable to higher frequencies and compatible with low-cost fabrication techniques.
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
Periodic loading of 1-D metallodielectric electromagnetic bandgap (MEBG) structures has been rigorously investigated. Miniaturised and broadband MEBG structures have been produced by means of periodically loading a dipole array. A study has been carried out with regard to the loading mechanism, the number of stubs, the topology of the structure and the order of loading. Simulations have been carried out using a method of moments based software. First order uniform loading stubs have yielded a significant size reduction of the MEBG array and the bandwidth has doubled. Good agreement between simulations and measurements has been achieved. The current distribution on the proposed structure has been studied, yielding valuable insight. An interdigital topology has resulted in further miniaturisation and bandwidth enhancement. Fractal-type arrays have been produced after applying second order loading. A maximum miniaturisation of 2.5:1 has been achieved.
Resumo:
Query processing over the Internet involving autonomous data sources is a major task in data integration. It requires the estimated costs of possible queries in order to select the best one that has the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state, and complexity of the query. In this paper, we study the effects of both the network congestion and server contention state on the cost of a query. We refer to these two factors together as system contention states. We present a new approach to determining the system contention states by clustering the costs of a sample query. For each system contention state, we construct two cost formulas for unary and join queries respectively using the multiple regression process. When a new query is submitted, its system contention state is estimated first using either the time slides method or the statistical method. The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of the query is further adjusted to improve its accuracy. Our experiments show that our methods can produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.
Resumo:
In this paper, the compression of multispectral images is addressed. Such 3-D data are characterized by a high correlation across the spectral components. The efficiency of the state-of-the-art wavelet-based coder 3-D SPIHT is considered. Although the 3-D SPIHT algorithm provides the obvious way to process a multispectral image as a volumetric block and, consequently, maintain the attractive properties exhibited in 2-D (excellent performance, low complexity, and embeddedness of the bit-stream), its 3-D trees structure is shown to be not adequately suited for 3-D wavelet transformed (DWT) multispectral images. The fact that each parent has eight children in the 3-D structure considerably increases the list of insignificant sets (LIS) and the list of insignificant pixels (LIP) since the partitioning of any set produces eight subsets which will be processed similarly during the sorting pass. Thus, a significant portion from the overall bit-budget is wastedly spent to sort insignificant information. Through an investigation based on results analysis, we demonstrate that a straightforward 2-D SPIHT technique, when suitably adjusted to maintain the rate scalability and carried out in the 3-D DWT domain, overcomes this weakness. In addition, a new SPIHT-based scalable multispectral image compression algorithm is used in the initial iterations to exploit the redundancies within each group of two consecutive spectral bands. Numerical experiments on a number of multispectral images have shown that the proposed scheme provides significant improvements over related works.
Resumo:
The United States Supreme Court case of 1991, Feist Publications, Inc. v. Rural Tel. Service Co., continues to be highly significant for property in data and databases, but remains poorly understood. The approach taken in this article contrasts with previous studies. It focuses upon the “not original” rather than the original. The delineation of the absence of a modicum of creativity in selection, coordination, and arrangement of data as a component of the not original forms a pivotal point in the Supreme Court decision. The author also aims at elucidation rather than critique, using close textual exegesis of the Supreme Court decision. The results of the exegesis are translated into a more formal logical form to enhance clarity and rigor.
The insufficiently creative is initially characterized as “so mechanical or routine.” Mechanical and routine are understood in their ordinary discourse senses, as a conjunction or as connected by AND, and as the central clause. Subsequent clauses amplify the senses of mechanical and routine without disturbing their conjunction.
The delineation of the absence of a modicum of creativity can be correlated with classic conceptions of computability. The insufficiently creative can then be understood as a routine selection, coordination, or arrangement produced by an automatic mechanical procedure or algorithm. An understanding of a modicum of creativity and of copyright law is also indicated.
The value of the exegesis and interpretation is identified as its final simplicity, clarity, comprehensiveness, and potential practical utility.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.
Resumo:
A new configurable architecture is presented that offers multiple levels of video playback by accommodating variable levels of network utilization and bandwidth. By utilizing scalable MPEG-4 encoding at the network edge and using specific video delivery protocols, media streaming components are merged to fully optimize video playback for IPv6 networks, thus improving QoS. This is achieved by introducing “programmable network functionality” (PNF) which splits layered video transmission and distributes it evenly over available bandwidth, reducing packet loss and delay caused by out-of-profile DiffServ classes. An FPGA design is given which gives improved performance, e.g. link utilization, end-to-end delay, and that during congestion, improves on-time delivery of video frames by up to 80% when compared to current “static” DiffServ.
Resumo:
This paper considers a Q-ary orthogonal direct-sequence code-division multiple-access (DS-CDMA) system with high-rate space-time linear dispersion codes (LDCs) in time-varying Rayleigh fading multiple-input-multiple-output (MIMO) channels. We propose a joint multiuser detection, LDC decoding, Q-ary demodulation, and channel-decoding algorithm and apply the turbo processing principle to improve system performance in an iterative fashion. The proposed iterative scheme demonstrates faster convergence and superior performance compared with the V-BLAST-based DS-CDMA system and is shown to approach the single-user performance bound. We also show that the CDMA system is able to exploit the time diversity offered by the LDCS in rapid-fading channels.