49 resultados para Learning. Mathematics. Quadratic Functions. GeoGebra
Resumo:
The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.
Resumo:
Building on a proof by D. Handelman of a generalisation of an example due to L. Fuchs, we show that the space of real-valued polynomials on a non-empty set X of reals has the Riesz Interpolation Property if and only if X is bounded.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
Resumo:
In this paper we present a generalization of belief functions over fuzzy events. In particular we focus on belief functions defined in the algebraic framework of finite MV-algebras of fuzzy sets. We introduce a fuzzy modal logic to formalize reasoning with belief functions on many-valued events. We prove, among other results, that several different notions of belief functions can be characterized in a quite uniform way, just by slightly modifying the complete axiomatization of one of the modal logics involved in the definition of our formalism. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Cooperative learning can actively engage students in school science, stimulating curiosity and improving attitudes and motivation. Allen Thurston discusses the roles teachers and students can play to maximize its potential.
Resumo:
Background
When asked to solve mathematical problems, some people experience anxiety and threat, which can lead to impaired mathematical performance (Curr Dir Psychol Sci 11:181–185, 2002). The present studies investigated the link between mathematical anxiety and performance on the cognitive reflection test (CRT; J Econ Perspect 19:25–42, 2005). The CRT is a measure of a person’s ability to resist intuitive response tendencies, and it correlates strongly with important real-life outcomes, such as time preferences, risk-taking, and rational thinking.
Methods
In Experiments 1 and 2 the relationships between maths anxiety, mathematical knowledge/mathematical achievement, test anxiety and cognitive reflection were analysed using mediation analyses. Experiment 3 included a manipulation of working memory load. The effects of anxiety and working memory load were analysed using ANOVAs.
Results
Our experiments with university students (Experiments 1 and 3) and secondary school students (Experiment 2) demonstrated that mathematical anxiety was a significant predictor of cognitive reflection, even after controlling for the effects of general mathematical knowledge (in Experiment 1), school mathematical achievement (in Experiment 2) and test anxiety (in Experiments 1–3). Furthermore, Experiment 3 showed that mathematical anxiety and burdening working memory resources with a secondary task had similar effects on cognitive reflection.
Conclusions
Given earlier findings that showed a close link between cognitive reflection, unbiased decisions and rationality, our results suggest that mathematical anxiety might be negatively related to individuals’ ability to make advantageous choices and good decisions.
Resumo:
This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.
Resumo:
This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.
Resumo:
This paper addresses the problem of learning Bayesian network structures from data based on score functions that are decomposable. It describes properties that strongly reduce the time and memory costs of many known methods without losing global optimality guarantees. These properties are derived for different score criteria such as Minimum Description Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates structural constraints with data in a way to guarantee global optimality. As an example, structural constraints are used to map the problem of structure learning in Dynamic Bayesian networks into a corresponding augmented Bayesian network. Finally, we show empirically the benefits of using the properties with state-of-the-art methods and with the new algorithm, which is able to handle larger data sets than before.