36 resultados para Lamar, L. Q. C. (Lucius Quintus Cincinnatus), 1825-1893.
Resumo:
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Resumo:
PURPOSE: The aim of this study was to determine whether combining potential biomarkers of fruit and vegetables is better at predicting FV intake within FV intervention studies than single biomarkers.
DESIGN: Data from a tightly controlled randomised FV intervention study (BIOFAV; all food provided and two meals/day on weekdays consumed under supervision) were used. A total of 30 participants were randomised to either 2, 5 or 8 portions FV/day for 4 weeks, and blood samples were collected at baseline and 4 weeks for plasma vitamin C and serum carotenoid analysis. The combined biomarker approach was also tested in three further FV intervention studies conducted by the same research team, with less strict dietary control (FV provided and no supervised meals).
RESULTS: The combined model containing all carotenoids and vitamin C was a better fit than either the vitamin C only (P < 0.001) model or the lutein only (P = 0.006) model in the BIOFAV study. The C-statistic was slightly lower in the lutein only model (0.85) and in the model based upon factor analysis (0.88), and much lower in the vitamin C model (0.68) compared with the full model (0.95). Results for the other studies were similar, although the differences between the models were less marked.
CONCLUSIONS: Although there was some variation between studies, which may relate to the level of dietary control or participant characteristics, a combined biomarker approach to assess overall FV consumption may more accurately predict FV intake within intervention studies than the use of a single biomarker. The generalisability of these findings to other populations and study designs remains to be tested.Â
Resumo:
The purpose of this paper is to conceptualise and operationalise the concept of supply chain management sustainability practices. Based on a multi-stage procedure involving a literature review, expert Q-sort and pre-test process, pilot test and survey of 156 supply chain directors and managers in Ireland, we develop a multidimensional conceptualisation and measure of social and environmental supply chain management sustainability practices. The research findings show theoretically sound constructs based on four underlying sustainable supply chain management practices: monitoring, implementing systems, new product and process development and strategy redefinition. A two-factor model is then identified as the most reliable: comprising process-based and market-based practices.
Resumo:
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter ≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.
Resumo:
Natural mineral-water interface reactions drive ecosystem/global fluoride (F−) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F− mobilization. However, attempts to develop the method for F− have been unsuccessful due to the very restrictive operational ranges that most F−-absorbents function within. A new hybrid-DGT technique for F− quantification containing a three-phase fine particle composite (Fesingle bondAlsingle bondCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0–200 mmol L−1 and 4.3–9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm−2). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F− fluvial fluxes in a freshwater river and F− concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F−-enriched lake using the new FAC-DGT platform.