41 resultados para Knee Arthroplasty


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes.A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics-particle simulations are performed to confirm the effect. The resulting large-scale magnetic field may facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactic cosmic-ray (CR) acceleration to the knee in the spectrum at a few PeV is only possible if the magnetic field ahead of a supernova remnant (SNR) shock is strongly amplified by CRs escaping the SNR. A model formulated in terms of the electric charge carried by escaping CRs predicts the maximum CR energy and the energy spectrum of CRs released into the surrounding medium. We find that historical SNRs such as Cas A, Tycho and Kepler may be expanding too slowly to accelerate CRs to the knee at the present time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to measure acetabular cup orientation accurately during total hip arthroplasty represents a significant challenge. The aim of this research was to develop and evaluate a novel low cost mechanical device for measuring operative acetabular inclination. Cup implantation was simulated in two trials using the novel device: firstly involving surgeons and engineers orientating acetabular cups with sawbone pelves at a range of inclination angles (20°-55° in 5° increments); secondly in a simulated intra-operative scenario with surgeons. Target angles were compared with achieved angles and deviations from desired angles were recorded. In addition, all participants orientated cups under the same conditions using two other techniques: freehand and with a propriatory Mechanical Alignment Guide. In the first trial, the mean errors (deviations) using freehand technique, the mechanical alignment guide and the new device were 5.2° +/- 4.3° (range 0.1-22.0), 3.6° +/- 3.9° (range 0.1°-33.6°) and 0.5° +/- 0.4° (range 0.0-1.9) respectively. In the second trial, the mean error for freehand technique, mechanical alignment guide and the new device were 6.2° +/- 4.2° (range 0.2-18.2), 3.8° +/- 3.3° (range 0.0-19.1) and 0.6° +/- 0.5° (range 0.0-1.8) respectively. The new device has the potential to allow the surgeon to choose and record operative inclination accurately during total hip arthroplasty in the lateral decubitus position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Differentiation between septic and aseptic loosening of joint replacements is essential for successful revision surgery, but reliable markers for the diagnosis of low-grade infection are lacking. The present study was performed to assess intra-articular and systemic levels of antimicrobial peptides and proinflammatory cytokines as diagnostic markers for periprosthetic joint infection. Methods: Fifteen consecutive patients with staphylococcal periprosthetic joint infections and twenty control patients with aseptic loosening of total hip and knee replacements were included in this prospective, single-center, controlled clinical trial. Expression of the antimicrobial peptides human β-defensin-2 (HBD-2), human β-defensin-3 (HBD-3), and cathelicidin LL-37 (LL-37) was determined by ELISA (enzyme-linked immunosorbent assay) in serum and joint aspirates. Proinflammatory cytokines were assessed in serum and joint aspirates with use of cytometric bead arrays. C-reactive protein in serum, microbiology, and histopathology of periprosthetic tissue served as the “gold standard” for the diagnosis of infection. Results: The antimicrobial peptides HBD-3 and LL-37 were significantly elevated in joint aspirates from patients with periprosthetic joint infection compared with patients with aseptic loosening, and the area under the curve (AUC) in a receiver operating characteristic curve analysis was equal to 0.745 and 0.875, respectively. Additionally, significant local increases in the proinflammatory cytokines interleukin (IL)-1β, IL-4, IL-6, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were observed to be associated with infection. Logistic regression analysis indicated that the combination of an antimicrobial peptide with another synovial fluid biomarker improved diagnostic accuracy; the AUC value was 0.916 for LL-37 and IL-4, 0.895 for LL-37 and IL-6, 0.972 for HBD-3 and IL-4, and 0.849 for HBD-3 and IL-6. In contrast, the only antimicrobial peptides and cytokines in serum that showed a significant systemic increase in association with infection were HBD-2, IL-4, and IL-6 (all of which had an AUC value of <0.75). Conclusions: The present study showed promising results for the use of antimicrobial peptides and other biomarkers in synovial fluid for the diagnosis of periprosthetic joint infection, and analysis of the levels in synovial fluid was more accurate than analysis of serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate the received signal characteristics of on-body communications channels at 2.45 GHz. The hypothetical body area network configuration considered a transmitter node situated on the person’s left waist and receiving nodes positioned on the head, knee and wrist of the person’s right side. The on-body channel measurements were performed in both anechoic and reverberant environments while the person was moving. It was found that the recently proposed shadowed κ‒μ fading model provided an excellent fit to the measured data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the realisation of precision surface finish (Ra 30 nm) on AISI 4340 steel using a conventional turret lathe by adapting and incorporating a surface defect machining (SDM) method [Wear, 302, 2013 (1124-1135)]. Conventional ways of machining materials are limited by the use of a critical feed rate, experimentally determined as 0.02 mm/rev, beyond which no appreciable improvement in the machined quality of the surface is obtained. However, in this research, the novel application of an SDM method was used to overcome this minimum feed rate limitation ultimately reducing it to 0.005 mm/rev and attaining an average machined surface roughness of 30 nm. From an application point of view, such a smooth finish is well within the values recommended in the ASTM standards for total knee joint prosthesis. Further analysis was done using SEM imaging, white light interferometry and numerical simulations to verify that adapting SDM method provides improved surface integrity by reducing the extent of side flow, microchips and weldments during the hard turning process.