34 resultados para Kahn, Ida
Resumo:
Wnt/β-catenin signaling has a central role in the development and progression of most colon cancers (CCs). Germline variants in Wnt/β-catenin pathway genes may result in altered gene function and/or activity, thereby causing inter-individual differences in relation to tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of Wnt/β-catenin pathway genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II CC. A total of 234 patients treated with 5-fluorouracil-based chemotherapy were included in this study. Whole-blood samples were analyzed for putative functional germline polymorphisms in SFRP3, SFRP4, DKK2, DKK3, Axin2, APC, TCF7L2, WNT5B, CXXC4, NOTCH2 and GLI1 genes by PCR-based restriction fragment-length polymorphism or direct DNA sequencing. Polymorphisms with statistical significance were validated in an independent study cohort. The minor allele of WNT5B rs2010851 T>G was significantly associated with a shorter TTR (10.7 vs 4.9 years; hazard ratio: 2.48; 95% CI, 0.96-6.38; P=0.04) in high-risk stage II CC patients. This result remained significant in multivariate Cox's regression analysis. This study shows that the WNT5B germline variant rs2010851 was significantly identified as a stage-dependent prognostic marker for CC patients after 5-fluorouracil-based adjuvant therapy.
Resumo:
PURPOSE: Recent evidence suggests that cancer stem cells (CSC) are responsible for key elements of colon cancer progression and recurrence. Germline variants in CSC genes may result in altered gene function and/or activity, thereby causing interindividual differences in a patient's tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of CSC genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II colon cancer.
EXPERIMENTAL DESIGN: A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole blood samples were analyzed for germline polymorphisms in genes that have been previously associated with colon CSC (CD44, Prominin-1, DPP4, EpCAM, ALCAM, Msi-1, ITGB1, CD24, LGR5, and ALDH1A1) by PCR-RFLP or direct DNA-sequencing.
RESULTS: The minor alleles of CD44 rs8193 C>T, ALCAM rs1157 G>A, and LGR5 rs17109924 T>C were significantly associated with increased TTR (9.4 vs. 5.4 years; HR, 0.51; 95% CI: 0.35-0.93; P = 0.022; 11.3 vs. 5.7 years; HR, 0.56; 95% CI: 0.33-0.94; P = 0.024, and 10.7 vs. 5.7 years; HR, 0.33; 95% CI: 0.12-0.90; P = 0.023, respectively) and remained significant in the multivariate analysis stratified by ethnicity. In recursive partitioning, a specific gene variant profile including LGR5 rs17109924, CD44 rs8193, and ALDH1A1 rs1342024 represented a high-risk subgroup with a median TTR of 1.7 years (HR, 6.71, 95% CI: 2.71-16.63, P < 0.001).
CONCLUSION: This is the first study identifying common germline variants in colon CSC genes as independent prognostic markers for stage III and high-risk stage II colon cancer patients.
Resumo:
Background: Long working hours might increase the risk of cardiovascular disease, but prospective evidence is scarce, imprecise, and mostly limited to coronary heart disease. We aimed to assess long working hours as a risk factor for incident coronary heart disease and stroke.
Methods We identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014. We obtained unpublished data for 20 cohort studies from the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium and open-access data archives. We used cumulative random-effects meta-analysis to combine effect estimates from published and unpublished data.
Findings We included 25 studies from 24 cohorts in Europe, the USA, and Australia. The meta-analysis of coronary heart disease comprised data for 603 838 men and women who were free from coronary heart disease at baseline; the meta-analysis of stroke comprised data for 528 908 men and women who were free from stroke at baseline. Follow-up for coronary heart disease was 5·1 million person-years (mean 8·5 years), in which 4768 events were recorded, and for stroke was 3·8 million person-years (mean 7·2 years), in which 1722 events were recorded. In cumulative meta-analysis adjusted for age, sex, and socioeconomic status, compared with standard hours (35-40 h per week), working long hours (≥55 h per week) was associated with an increase in risk of incident coronary heart disease (relative risk [RR] 1·13, 95% CI 1·02-1·26; p=0·02) and incident stroke (1·33, 1·11-1·61; p=0·002). The excess risk of stroke remained unchanged in analyses that addressed reverse causation, multivariable adjustments for other risk factors, and different methods of stroke ascertainment (range of RR estimates 1·30-1·42). We recorded a dose-response association for stroke, with RR estimates of 1·10 (95% CI 0·94-1·28; p=0·24) for 41-48 working hours, 1·27 (1·03-1·56; p=0·03) for 49-54 working hours, and 1·33 (1·11-1·61; p=0·002) for 55 working hours or more per week compared with standard working hours (ptrend<0·0001).
Interpretation Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker. These findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours.
Resumo:
We report the first detection of a gap and a ring in dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array. The gap and ring are located at 25 and 41 AU from the central star, respectively, and are associated with the CO snowline at ~ 30AU. The gap width and depth are 15AU at the maximum and 23% at the minimum, respectively, regarding that the observations are limited to an angular resolution of ~ 15AU. In addition, we detect a decrement in CO line emission down to ~ 10AU, indicating freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. According to theoretical studies, the gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2 Neptune mass), or result from destruction of large dust aggregates due to the sintering of CO ice.