85 resultados para KINASE-C


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The pig eye is similar to the human eye in terms of anatomy, vasculature, and photoreceptor distribution, and therefore provides an attractive animal model for research into retinal disease. The purpose of this study was to characterize retinal histology in the developing and mature pig retina using antibodies to well established retinal cell markers commonly used in rodents.

METHODS: Eyes were enucleated from fetuses in the 9th week of gestation, 1 week old piglets and 6 months old adult animals. Eyeglobes were fixed and cryosectioned. A panel of antibodies to well established retinal markers was employed for immunohistochemistry. Fluorescently labeled secondary antibodies were used for signal detection, and images were acquired by confocal microscopy. Mouse retina at postnatal day (P) 5 was used as a reference for this study to compare progression of histogenesis. Most of the primary antibodies have previously been used on mouse tissue.

RESULTS: Most of the studied markers were detected in midgestation pig retina, and the majority had a similar distribution in pig as in P5 mouse retina. However, rhodopsin immunolabeling was detected in pig retina at midgestation but not in P5 mouse retina. Contrary to findings in all rodents, horizontal cells were Islet1-positive and cones were calbindin-immunoreactive in pig retina, as has also been shown for the primate retina. Recoverin and rhodopsin immunolabeling revealed an increase in the length of photoreceptor segments in 6 months, compared to 1 week old animals.

CONCLUSIONS: Comparison with the published data on human retina revealed similar marker distribution and histogenesis progression in the pig and human retina, supporting the pig as a valuable animal model for studies on retinal disease and repair. Furthermore, this study provides information about the dynamics of retinal histogenesis in the pig and validates a panel of antibodies that reliably detects developing and mature retinal cell phenotypes in the pig retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3, the active form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted “Swiss cheese-like” cribriform morphology (CM) comprising multiple abnormal “back to back” lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked 1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An early and critical event in beta2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent beta2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) beta2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3´,5´-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected beta2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in beta2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FcRI activation of mast cells is thought to involve Lyn and Syk kinases proximal to the receptor and the signaling complex organized by the linker for activation of T cells (LAT). We report here that FcRI also uses a Fyn kinase-dependent pathway that does not require Lyn kinase or the adapter LAT for its initiation, but is necessary for mast cell degranulation. Lyn-deficiency enhanced Fyn-dependent signals and degranulation, but inhibited the calcium response. Fyn-deficiency impaired degranulation, whereas Lyn-mediated signaling and calcium was normal. Thus, FcRI-dependent mast cell degranulation involves cross-talk between Fyn and Lyn kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:
Aurora kinases play an essential role in the orchestration of chromosome separation and cytokinesis during mitosis. Small-molecule inhibition of the aurora kinases has been shown to result in inhibition of cell division, phosphorylation of histone H3 and the induction of apoptosis in a number of cell systems. These characteristics have led aurora kinase inhibitors to be considered as potential therapeutic agents.
DESIGN AND METHODS:
Aurora kinase gene expression profiles were assessed in 101 samples from patients with acute myeloid leukemia. Subsequently, aurora kinase inhibitors were investigated for their in vitro effects on cell viability, histone H3 phosphorylation, cell cycle and morphology in acute myeloid leukemia cell lines and primary acute myeloid leukemia samples.
RESULTS:
The aurora kinase inhibitors AZD1152-HQPA and ZM447439 induced growth arrest and the accumulation of hyperploid cells in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. Furthermore, both agents inhibited histone H3 phosphorylation and this preceded perturbations in cell cycle and the induction of apoptosis. Single cell cloning assays were performed on diploid and polyploid cells to investigate their colony-forming capacities. Although the polyploid cells showed a reduced capacity for colony formation when compared with their diploid counterparts, they were consistently able to form colonies.
CONCLUSIONS:
AZD1152-HQPA- and ZM447439 are effective apoptosis-inducing agents in acute myeloid leukemia cell lines and primary acute myeloid leukemia cultures. However, their propensity to induce polyploidy does not inevitably result in apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of polyphosphate (polyP) metabolism in microorganisms have been hampered by the lack of a convenient method for the assay in cell extracts of the activity of polyphosphate kinase (PPK), the enzyme principally responsible for microbial polyP biosynthesis. We report the development of such an assay, based on the well-established metachromatic reaction, with toluidine blue, of the polyP formed during the PPK-catalyzed reaction. The method was successfully used in the characterization of PPK activity in crude extracts of an environmental Burkholderia cepacia isolate. The development of a protocol for the physical recovery of polyP from solution is also reported. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.