61 resultados para Julius Schade and Co.
Resumo:
There is some dispute as to whether methanol decomposition occurs by O-H bond scission or C-O bond scission. By carrying out density functional theory calculations, we investigate both scenario of the reaction pathways of methanol decomposition on a Pd(111) surface. It is shown that the O-H bond scission pathway is much more energetically favorable than the C-O bond scission pathway. The high reaction barrier in the latter case is found to be due to the poor bonding abilities of CH3 and OH with the surface at the reaction sites. (C) 2001 American Institute of Physics.
Resumo:
The joint tenancy with its inherent right of survivorship is the most prevalent form of co-ownership in the common law world today. Most couples will be joint tenants of a family home, while relations (such as siblings) who purchase property together may opt for this arrangement. Inter vivos acquisitions aside, the huge intergenerational transfer of wealth within families on death can result in a joint tenancy, and it may also be a convenient estate planning device. The fact that property automatically vests in the surviving joint tenants on death is the reason why many people choose this form of co-ownership. However, there is one serious disadvantage. A joint tenancy is an inflexible form of landholding where relationships sour or family circumstances change over time, and co-owners want their respective `shares' of the property to pass to someone else on death. Where consensual severance is not possible, one joint tenant can sever unilaterally. The latter mechanism is vital in terms of giving effect to the wishes of the severing joint tenant, especially in situations of discord or a breakdown in relations with their fellow co-owners. However, unilateral severance also has serious implications for the non-severing joint tenant(s) who expected to inherit property through survivorship, and can impact significantly on ownership of the home and other family property. This article looks at unilateral severance as a means of subverting the right of survivorship. The focus is on personal and inter-family relationships, and the various legal issues and policy considerations associated with unilateral severance across the common law jurisdictions of Britain, Ireland, Australia, Canada, and New Zealand. It assesses the various methods of effecting unilateral severance and proposes specific measures, as well as considering novel arguments for preventing unilateral severance based on contractual agreements to the contrary and proprietary estoppel.
Resumo:
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.
Resumo:
Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III and facilitates their transcription in cells. Our findings indicate that, beyond the established role in Pol II transcription, FACT has physiological functions in chromatin transcription by all three nuclear RNA Pols. Our data also imply that local chromatin dynamics influence transcription of the active rRNA genes by Pol I and of Pol III-transcribed genes.
Resumo:
As biological invasions continue, interactions occur not only between invaders and natives, but increasingly new invaders come into contact with previous invaders. Whilst this can lead to species replacements, co-existence may occur, but we lack knowledge of processes driving such patterns. Since environmental heterogeneity can determine species richness and co-existence, the present study examines habitat use and its mediation of the predatory interaction between invasive aquatic amphipods, the Ponto-Caspian Dikerogammarus villosus and the N. American Gammarus tigrinus. In the Dutch Lake IJsselmeer, we found broad segregation of D. villosus and G. tigrinus by habitat type, the former predominating in the boulder zone and the latter in the soft sediment. However, the two species co-exist in the boulder zone, both on the short and longer terms. We used an experimental simulation of habitat heterogeneity and show that both species utilize crevices, different sized holes in a plastic grid, non-randomly. These amphipods appear to optimise the use of holes with respect to their 'C-shape' body size. When placed together, D. villosus adults preyed on G. tigrinus adults and juveniles, while G. tigrinus adults preyed on D. villosus juveniles. Juveniles were also predators and both species were cannibalistic. However, the impact on G. tigrinus of the superior intraguild predator, D. villosus, was significantly reduced where experimental grids were present as compared to absent. This mitigation of intraguild predation between the two species in complex habitats may explain the co-existence of these two invasive species.
Resumo:
Intraguild predation (IGP) between invasive and native species can lead to species exclusions or co-existence, dependent on the direction and strength of the interaction. Recently, derivation of 'functional responses' has been identified as a means of comparing the community impacts of invasive and native species. Here, we employ a novel use of this functional response methodology to evaluate any IGP asymmetries between the invasive Ponto-Caspian amphipod Echinogammarus ischnus and the North American native Gammarus fasciatus. The direction and magnitude of intraguild predation of adult males on hetero-specific adult females has previously been shown to reverse across a water conductivity gradient. This partially explains field patterns, but does not predict the co-existence of the two species observed in many habitats and locations. Here, we compared intraguild predation by both species on each other's juveniles in high- and low- conductivity water. G. fasciatus has a higher type II functional response towards E. ischnus juveniles compared to the reciprocal interaction. Conductivity did not influence the predation rate on juveniles of either E. ischnus or G. fasciatus. Thus, the male/female IGP advantage to the native G. fasciatus in low conductivity water is compounded by a juvenile IGP asymmetry, which also counteracts the male/female IGP advantage to E. ischnus in high conductivity waters, helping to explain field patterns of exclusion and co-existence. Thus, complex asymmetries in mutual IGP associated with inherent species differences, environmental modulation, and life-history effects can help us understand and predict the population and community level outcomes of species invasions.
Resumo:
Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin (1-10). In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H2O solvent mixture, the structure of obestatin {1-23} was characterized by an a-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an a-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed a-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO<sub>2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO<sub>2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO<sub>2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO<sub>2/N2 selectivity and slowest CO<sub>2 transport despite CO<sub>2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO<sub>2 are further exploited by examining the residing state of CO<sub>2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO<sub>2, which provide an explanation to slower CO<sub>2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.
Resumo:
Maps are presented of J=2-1 and J=3-2 (CO)-O-18 emission from the molecular environment of the bipolar nebula S106, together with complementary observations of the P-3(1)-P-3(0), C I emission. Line splitting observed extensively over the E molecular cloud suggests that it is best explained as the expanding remnant of a thick toroid surrounding the optical lobes. The poor correlation between the observed molecular line emission and dust continuum emission in the E cloud is probably due to a large temperature gradient. Strong C I emission from the protostellar candidate S106 FIR suggests the nearby presence of a powerful source of far-UV radiation, whose energy supply is unlikely to arise from gravitational contraction of a protostar. It is probable that this source is the star S106 LR, which also heats S106 FIR. There is evidence, in both C I and (CO)-O-18, for a predominantly blueshifted outflow from S106 IR, best interpreted as a stellar wind-driven shock into the toroidal remnant. (CO)-O-18 and (CO)-C-13 appear to be depleted, relative to canonical values for their abundances, in S106 FIR, despite its high optical extinction, which should discourage selective photodissociation. Elsewhere in the cloud the C I line profiles show a resemblance to those of (CO)-O-18, with intensity equivalent to a few photodissociation regions (PDRs) along the line of sight.
Resumo:
Background: Co-localisation is a widely used measurement in immunohistochemical analysis to determine if fluorescently labelled biological entities, such as cells, proteins or molecules share a same location. However the measurement of co-localisation is challenging due to the complex nature of such fluorescent images, especially when multiple focal planes are captured. The current state-of-art co-localisation measurements of 3-dimensional (3D) image stacks are biased by noise and cross-overs from non-consecutive planes.
Method: In this study, we have developed Co-localisation Intensity Coefficients (CICs) and Co-localisation Binary Coefficients (CBCs), which uses rich z-stack data from neighbouring focal planes to identify similarities between image intensities of two and potentially more fluorescently-labelled biological entities. This was developed using z-stack images from murine organotypic slice cultures from central nervous system tissue, and two sets of pseudo-data. A large amount of non-specific cross-over situations are excluded using this method. This proposed method is also proven to be robust in recognising co-localisations even when images are polluted with a range of noises.
Results: The proposed CBCs and CICs produce robust co-localisation measurements which are easy to interpret, resilient to noise and capable of removing a large amount of false positivity, such as non-specific cross-overs. Performance of this method of measurement is significantly more accurate than existing measurements, as determined statistically using pseudo datasets of known values. This method provides an important and reliable tool for fluorescent 3D neurobiological studies, and will benefit other biological studies which measure fluorescence co-localisation in 3D.
Resumo:
The aim of this paper is to identify and classify the numerous managerial issues encountered in the management of personnel in confined site construction. For the purpose of this research, a confined construction site is defined as a site where permanent works fit the site footprint, extending to levels above and/or below ground level, leaving spatial restrictions for other operations (e.g. plant and material movements, materials storage and temporary accommodation etc.) and require effective resource co-ordination beyond normal on-site management input. A literature review and analysis, case studies incorporating interviews and focus groups along with a questionnaire survey were used in order to gain a comprehensive insight into the issues in the management of personnel in a confined construction site environment. The following are the top five leading issues highlighted in the management of personnel in confined site construction; (1) Accidents due to an untidy site, (2) One contractor holding up another because of the lack of space, (3) A risk to personnel because of vehicular traffic on-site, (4) Difficult to facilitate several contractors at one work location, and (5) Numerous personnel working within the one space. In today’s modern environment, spatial restrictions are quickly becoming the norm in the industry. Therefore, the management of personnel on-site becomes progressively more difficult with the decrease in available space on-site. Where such environments exist, acknowledging the numerous issues highlighted above, aids site management in the supervision and co-ordination of personnel on-site, thus reducing accidents, increasing productivity and increase profit margins, in spatially restricted environments. As on-site management professionals successfully identify, acknowledge and counteract the numerous issues illustrated, the successful management of personnel on a confined construction site is achievable. By identifying the numerous issues, on-site management can proactively mitigate such issues through adopting counteractive measures and through successful identification of the traits identified.
Resumo:
Self-potential and spectral induced polarization responses associated with microbial processes involved in sulphate reduction have been monitored in a Perspex Winogradsky column filled with glass beads and growth medium. Salt-bridge is utilized as an electrolytic contact between experiment and control column. Equally spaced SP electrodes are used in combination of Ag-AgCl electrodes to compare electrodic and SP signals associated with the microbial processes involved in sulphate reduction. This study reveals that magnitude of SP varies from 5 to -2 mV and Electrodic potential 0 to -20 mV at the time of domination (day 39) of sulphate reducing bacteria which are very small in comparison to those measured by fixing both measuring and reference Ag-AgCl electrodes in experiment column. We observed that real and imaginary parts of complex conductivities increase with increase in production of H2S and CO in the experiment column. Both real and imaginary parts of surface complex conductivity vary at low frequencies similar to typical growth curve of bacterial population. Sodium lactate as a carbon source, dissolved in Lagan River water was flushed into the column for biostimulation on 144th day. The dissolved oxygen in flushed fluid might have killed the anaerobes in the column and decrease in complex conductivities similar to death phase of bacteria is observed for one week. The results obtained from this experiment should contribute to further understanding the biogeophysical responses involved in complex environments.
Read More: http://library.seg.org/doi/abs/10.1190/segj092009-001.57
Resumo:
This article reviews ongoing work to increase awareness of, and raise standards in relation to, freedom of peaceful assembly across Europe, the South Caucasus, and Central Asia. The work is led by the Office of Democratic Institutions and Human Rights (ODIHR) at the Organisation of Security and Co-operation in Europe (OCSE). The article begins by highlighting the importance of freedom of peaceful assembly within democratic societies, and then describes the development of the ODIHR Guidelines on Peaceful Assembly. The article outlines some of the key issues of contention relating to the regulation of freedom of assembly, and discusses the process of reviewing the existing and draft legislation against the standards articulated in the Guidelines. In this context, the article also explores the potential for constructive engagement between government, civil society, and the OSCE to facilitate legislative amendments that respect key human rights norms and principles. Finally, the article reviews recent developments in training monitors of public assemblies with the aim of building local monitoring capacity and thus developing an evidence base of the practical implementation of laws relating to freedom of peaceful assembly. © The Author (2009). Published by Oxford University Press. All rights reserved.
Resumo:
XPS, HREELS, ARUPS and Delta phi data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant a interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: similar to 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and H-a followed by desorption rate limited loss of H-2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H-2 and C-a.
Resumo:
A combined experimental-computational study on the CO absorption on 1-butyl-3-methylimidazolium hexafluophosphate, 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, and 1-butyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide ionic liquids is reported. The reported results allowed to infer a detailed nanoscopic vision of the absorption phenomena as a function of pressure and temperature. Absorption isotherms were measured at 318 and 338K for pressures up to 20MPa for ultrapure samples using a state-of-the-art magnetic suspension densimeter, for which measurement procedures are developed. A remarkable swelling effect upon CO absorption was observed for pressures higher than 10MPa, which was corrected using a method based on experimental volumetric data. The experimental data reported in this work are in good agreement with available literature isotherms. Soave-Redlich-Kwong and Peng-Robinson equations of state coupled with bi-parametric van der Waals mixing rule were used for successful correlations of experimental high pressure absorption data. Molecular dynamics results allowed to infer structural, energetic and dynamic properties of the studied CO+ionic liquids mixed fluids, showing the relevant role of the strength of anion-cation interactions on fluid volumetric properties and CO absorption. © 2012 Elsevier B.V.