184 resultados para Jason, BDI, AgentSpeak, Agenti
Resumo:
It is now well established that energetic electron emission, nonsequential ionization, and high harmonic generation, produced during the interaction of intense, femtosecond laser pulses with atoms (and atomic positive ions), can be explained by invoking rescattering of the active electron in the laser field, the so-called rescattering mechanism. In contrast for negative ions, the role of rescattering has not been established experimentally. By irradiating F- ions with ultrashort laser pulses, F+ ion yields as a function of intensity for both linearly and circularly polarized light have been measured. We find that, at intensities well below saturation for F+ production by sequential ionization, there is a small but significant enhancement in the yield for the case of linearly polarized light, providing the first clear experimental evidence for the existence of the rescattering mechanism in negative ions.
Resumo:
A comparative study of high harmonic generation (HHG) by atoms and ions with active p-electrons is carried out in the theoretical framework of the rescattering mechanism. The substate with m(l) = 0, i.e. zero orbital momentum projection along the electric vector of a linearly polarized laser wave, is found to give the major contribution to the HHG rate. Our calculations for HHG by an H atom in an excited 2p-state demonstrate that the rate for recombination into a final state with a different value of m(l) (= +/- 1), is higher for lower harmonic orders N, while for higher N (beyond the plateau domain) the difference vanishes. For species with closed electron shells, the m(l)-changing transitions are forbidden by the Pauli exclusion principle. We report absolute HHG rates for halogen ions and noble gas atoms at various intensities. These results demonstrate that the Coulomb binding potential of the atoms considerably enhances both the ionization and recombination steps in the rescattering process. However, the weak binding energy of the anions allows lower orders of HHG to be efficiently produced at relatively low intensities, from which we conclude that observation of HHG by an anion is experimentally feasible.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
Double beam modulation is widely used in atomic collision experiments in the case where the noise arising froth each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme.
Resumo:
The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.
Resumo:
X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.
Resumo:
Volume III of the new eleven-volume edition of Milton's Complete Works provides a definitive scholarly edition of all of Milton's shorter poems in English, Latin, Italian, and Greek, as well as his Mask, taken from both published and manuscript sources. It includes his 1645 Poems complete with all prefatory materials, thus illuminating the ways in which author, publisher, and print shop shaped this volume. It then presents all the new poems added in the 1673 edition (with the new Table of Contents), as well as the poems omitted from both editions. A careful collation of textual variants among these sources as well as the 1637 anonymous publication of Milton's Mask is provided. The Bridgewater manuscript of Milton's Mask (probably close to the acting version) and his working copy from the Trinity Manuscript, with its many alterations and additions, are transcribed in their entirety, so that the various versions may be compared and studied.
A special feature of this edition is a new translation of Milton's many Latin and Greek poems that is both accurate and attentive to their literary qualities. This is augmented by a detailed and comprehensive commentary that highlights classical, vernacular, and neo-Latin parallels. A poetic translation of Milton's six Italian sonnets and Canzone is also supplied. In addition, the Appendices contain all the versions of Milton's shorter poems in all the contemporary manuscript and printed sources, so they may be examined in relation to their specific contexts. The transcription of all the versions of Milton's poems in the Trinity Manuscript allows in several cases, notably 'Lycidas' and 'At a Solemn Music,' for examination of the evolution of these poems as Milton weighed choiced of diction and sound qualities, enabling further understanding of his poetic practices.
Barbara Lewalski is responsible for text, textual apparatus, and commentary pertaining to the vernacular poems in all sections of this edition including the appendices, and manuscript transcriptions (with the exception of A Maske), as well as the Occasions, Vernacular Poems,and Textual Introductions. Estelle Haan is responsible for text, textual apparatus, and commentary for the Poemata in all sections of this edition,and for the Poemata Introduction. She has also provided all translations from Latin, Italian, and Greek in the Testimonia, Poemata, and associated commentary, and transcriptions of the BL Damon, the Bodleian AdJoannem Rousium, and A Maske from the Trinity and Bridgewater manuscripts. Andrew McNeillie has provided poetic translations for Milton’s Italian sonnets, and Jason Rosenblatt has provided some Hebrew text and commentary pertaining to Milton’s Psalm translations.John Cunningham has transcribed Henry Lawes’ music for Milton’s masque, with commentary (Appendix E). Biblical references are taken from the King James (Authorized) Version.