33 resultados para Isothermal sintering
Resumo:
A novel electrical current applied technique known as flash sintering has been applied to rapidly (within 10 min) densify electrolytes including Ce0.8Gd0.2O1.9 (GDC20), Ce0.9Gd0.1O1.95 (GDC10), and Ce0.8Sm0.2O1.9 (SDC20) for application in Solid Oxide Fuel Cells (SOFCs). The densification temperature for the three electrolytes was 554°C, 635°C, and 667°C, respectively, which is far below conventional sintering temperatures. All specimens after flash sintering maintained the pure fluorite structure and exhibited a well-densified microstructure. To investigate the flash-sintering mechanism, we have applied Joule heating effect with blackbody radiation theory, and found that this theory could reasonably interpret the flash-sintering phenomenon by matching theoretically calculated temperature with the real temperature. More importantly, one of the materials inherent properties, the electronic conductivity, has been found correlated with the onset of flash sintering, which indicates that the electrons and holes are the primary current carriers during the start of flash-sintering process. As a result, potential densification mechanisms have been discussed in terms of spark plasma discharge.
Resumo:
La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.
Resumo:
The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.