222 resultados para Investigative Interviewing
Resumo:
PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.
Resumo:
PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.
METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.
RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).
CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.
Resumo:
PURPOSE. Polymorphic variation in genes involved in regulation of the complement system has been implicated as a major cause of genetic risk, in addition to the LOC387715/HTRA1 locus and other environmental influences. Previous studies have identified polymorphisms in the complement component 2 (CC2) and factor B (CFB) genes, as potential functional variants associated with AMD, in particular CFB R32Q and CC2 rs547154, both of which share strong linkage disequilibrium (LD). METHODS. Data derived from the HapMap Project were used to select 18 haplotype-tagging SNPs across the extended CC2/ CFB region for genotyping, to measure the strength of LD in 318 patients with neovascular AMD and 243 age-matched control subjects to identify additional potential functional variants in addition to those originally reported. RESULTS. Strong LD was measured across this region as far as the superkiller viralicidic activity 2-like gene (SKIV2L). Nine SNPs were identified to be significantly associated with the genetic effect observed at this locus. Of these, a nonsynonymous coding variant SKIV2L R151Q (rs438999; OR, 0.48; 95% confidence interval [CI], 0.31- 0.74; P < 0.001), was in strong LD with CFB R32Q, rs641153 (r2 = 0.95) and may exert a functional effect. When assessed within a logistic regression model measuring the effects of genetic variation at the CFH and LOC387715/HTRA1 loci and smoking, the effect remained significant (OR, 0.38; 95% CI, 0.22- 0.65; P < 0.001). Additional variation identified within this region may also confer a weaker but independent effect and implicate additional genes within the pathogenesis of AMD. CONCLUSIONS. Because of the high level of LD within the extended CC2/CFB region, variation within SKIV2L may exert a functional effect in AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
PURPOSE: To characterize the biophysical, pharmacologic, and functional properties of the Ca(2+)-activated Cl(-) current in retinal arteriolar myocytes. METHODS: Whole-cell perforated patch-clamp recordings were made from myocytes within intact isolated arteriolar segments. Arteriolar tone was assessed using pressure myography. RESULTS: Depolarizing of voltage steps to -40 mV and greater activated an L-type Ca(2+) current (I(Ca(L))) that was followed by a sustained current. Large tail currents (I(tail)) were observed on stepping back to -80 mV. The sustained current and I(tail) reversed close to 0 mV in symmetrical Cl(-) concentrations. The ion selectivity sequence for I(tail) was I(-)> Cl(-)> glucuronate. Outward I(tail) was sensitive to the Cl(-) channel blockers 9-anthracene-carboxylic acid (9-AC; 1 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 1 mM), and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; 1 mM), but only DIDS produced a substantial (78%) block of inward tail currents at -100 mV. I(tail) was decreased in magnitude when the normal bathing medium was substituted with Ca(2+)-free solution or if I(Ca(L)) was inhibited by 1 microM nimodipine. Caffeine (10 mM) produced large transient currents that reversed close to the Cl(-) equilibrium potential and were blocked by 1 mM DIDS or 100 microM tetracaine. DIDS had no effect on basal vascular tone in pressurized arterioles but dramatically reduced the level of vasoconstriction observed in the presence of 10 nM endothelin-1. CONCLUSIONS: Retinal arteriolar myocytes have I(Cl(Ca)), which may be activated by Ca(2+) entry through L-type Ca(2+) channels or Ca(2+) release from intracellular stores. This current appears to contribute to agonist-induced retinal vasoconstriction.
Resumo:
PURPOSE: Advanced glycation end products (AGEs) accumulate during aging and have been observed in postmortem eyes within the retinal pigment epithelium (RPE), Bruch's membrane, and subcellular deposits (drusen). AGEs have been associated with age-related dysfunction of the RPE-in particular with development and progression to age-related macular degeneration (AMD). In the present study the impact of AGEs at the RPE-Bruch's membrane interface was evaluated, to establish how these modifications may contribute to age-related disease. METHODS: AGEs on Bruch's membrane were evaluated using immunohistochemistry. A clinically relevant in vitro model of substrate AGE accumulation was established to mimic Bruch's membrane ageing. Responses of ARPE-19 growing on AGE-modified basement membrane (AGE-BM) for 1 month were investigated by using a microarray approach and validated by quantitative (q)RT-PCR. In addition to identified AGE-related mRNA alterations, lysosomal enzyme activity and lipofuscin accumulation were also studied in ARPE-19 grown on AGE-BM. RESULTS: Autofluorescent and glycolaldehyde-derived AGEs were observed in clinical specimens on Bruch's membrane and choroidal extracellular matrix. In vitro analysis identified a range of dysregulated mRNAs in ARPE-19 exposed to AGE-BM. Altered ARPE-19 degradative enzyme mRNA expression was observed on exposure to AGE-BM. AGE-BM caused a significant reduction in cathepsin-D activity in ARPE-19 (P
Resumo:
PURPOSE. A spontaneously arising retinal pigment epithelial (RPE) cell line (B6-RPE07) was cloned from a primary culture of mouse RPE cells and maintained in culture for more than 18 months. Morphologic and functional properties of this cell line have been characterized.
METHODS. The morphology of the B6-RPE07 cells was examined by phase-contrast light microscopy, electron microscopy, and confocal microscopy. Barrier properties were measured by the flux of fluorescence from the apical to the basolateral compartment of culture chambers. The abilities of the cells to bind/phagocytose photoreceptor outer segments (POS) were determined by confocal microscopy, electron microscopy, and flow cytometry. Cytokine/chemokine secretion was measured by cytometric bead array. The expression of visual cycle proteins was determined by RT-PCR and Western blotting.
RESULTS. In standard culture conditions, B6-RPE07 cells display cobblestone morphology. When cultured on three-dimensional (3D) collagen gel–coated membranes, B6-RPE07 cells exhibit a monolayer epithelial polarization with apical surface microvilli. Immunohistochemistry of B6-RPE07 cultures revealed a high expression of pan-cytokeratin. B6-RPE07 cells also expressed the retinal pigment epithelium-specific marker CRALBP, but not RPE65. Cell junction proteins ZO-1 and ß-catenin, but not claudin-1/3 or occludin-1, were observed in B6-RPE07 cells. B6-RPE07 cells are able to bind, phagocytose, and digest POS. Finally, B6-RPE07 cells produce high levels of IL-6 and CCL2.
CONCLUSIONS. This is the first report of a mouse RPE cell line with morphology, phenotype, and function similar to those of in vivo mouse RPE cells. This cell line will be a valuable resource for future RPE studies, in particular for in vivo gene modification and transplantation studies.