79 resultados para Interference Cancellation
Resumo:
Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Evolving RNA interference (RNAi) platforms are providing opportunities to probe gene function in parasitic helminths using reverse genetics. Although relatively robust methods for the application of RNAi in parasitic flatworms have been established, reports of successful RNAi are confined to three genera and there are no known reports of the application of RNAi to the class Cestoda. Here we report the successful application of RNAi to a cestode. Our target species was the common ruminant tapeworm, Moniezia expansa which can significantly impact the health/productivity of cattle, sheep and goats. Initial efforts aimed to silence the neuronally expressed neuropeptide F gene (Me-npf-1), which encodes one of the most abundant neuropeptides in flatworms and a homologue of vertebrate neuropeptide Y (NPY). Double stranded (ds)RNAs, delivered by electroporation and soaking (4-8 h), failed to trigger consistent Me-npf-1 transcript knock-down in adult worms; small interfering RNAs (siRNAs) were also ineffective. Identical approaches resulted in significant and consistent transcript knock-down of actin transcript (71 +/- 4%) following soaking in Me-act-1 dsRNA. Similar successes were seen with hydrophobic lipid-binding protein (Me-lbp-1), with a dsRNA inducing significant target transcript reduction (72 +/- 5%). To confirm the validity of the observed transcript knock-downs we further investigated Me-act-1 RNAi worms for associated changes in protein levels, morphology and phenotype. Me-act-1 RNAi worms displayed significant reductions in both filamentous actin immunostaining (62 +/- 3%) and the amount of actin detected in Western blots (54 +/- 13%). Morphologically, Me-act-1 RNAi worms displayed profound tegumental disruption/blebbing. Further, muscle tension recordings from Me-act-1 RNAi worms revealed a significant reduction in both the number of worms contracting in response to praziquantel (20 +/- 12%) and in their contractile ability. These data demonstrate, to our knowledge for the first time, a functional RNAi pathway in a cestode and show that the robust knock-down of abundant gene transcripts is achievable using long dsRNAs following short exposure times. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Asymmetric profiles have been observed in the recombination cross section of Be-like Bi obtained by measuring the electron energy dependence of the ion abundance ratio in an electron-beam ion trap. In contrast to the previous x-ray measurements, the present measurement gives the integrated recombination cross section with higher statistical quality, which provides a benchmark to test the relativistic theory involving the interference between the resonant and continuum states. The comparison with our theoretical study shows that the Breit interaction plays an important role in this case.
Resumo:
We report calculations of double ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two electron time-dependent Schr¨odinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly-ionizing wavepackets from different recollision events populate the same spatial hemisphere.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Resumo:
A new technique based on adaptive code-to-user allocation for interference management on the downlink of BPSK based TDD DS-CDMA systems is presented. The principle of the proposed technique is to exploit the dependency of multiple access interference on the instantaneous symbol values of the active users. The objective is to adaptively allocate the available spreading sequences to users on a symbol-by-symbol basis to optimize the decision variables at the downlink receivers. The presented simulations show an overall system BER performance improvement of more than an order of a magnitude with the proposed technique while the adaptation overhead is kept less than 10% of the available bandwidth.
Resumo:
Background: The use affixed-term employment has increased lately, particularly in Europe and in the health care sector. Previous studies have shown that especially among the health care sector employee's organizational justice perceptions and job control are important factors that are directly related to the welfare and attitudes of employees and may also help to buffer the negative impacts of many detrimental factors.