48 resultados para Integrated Crop-Livestock Systems
Resumo:
This paper discusses the importance of integrated sensing systems comprising techniques that give different types of data from a structure exposed to the marine environment so that its service life could reliably be predicted. For this purpose, a novel sensor combination was designed and installed in concrete panels which were exposed to Hangzhou Bay Bridge in China. The integrated sensor probe was used to monitor the cover concrete as well as the reinforcement. The sensor probes were connected to a monitoring station, which enabled access and control of the data remotely from Belfast, UK. The initial data obtained from the monitoring station gives interesting information on the early age properties of concrete and distinct variations in these properties with different types of concrete. This paper also reports the variation in electrical properties of different concrete samples and environmental data in response to the marine exposure condition at Hangzhou bay bridge.
Resumo:
More than 200 known diseases are transmitted via foods or food products. In the United States, food-borne diseases are responsible for 76 million cases of illness, 32,500 cases of hospitalisation and 5000 cases of death yearly. The ongoing increase in worldwide trade in livestock, food, and food products in combination with increase in human mobility (business- and leisure travel, emigration etc.) will increase the risk of emergence and spreading of such pathogens. There is therefore an urgent need for development of rapid, efficient and reliable methods for detection and identification of such pathogens.
Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses. These socalled ’Lab-on-a-Chip’ will completely change the face of laboratories in the future where smaller, fully automated devices will be able to perform assays faster, more accurately, and at a lower cost than equipment of today. A general introduction of food safety and applied micro-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-achip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro- Nanotechnology (LAMINATE) group at the National Veterinary Institute (DTU-Vet) Technical University of Denmark and the BioLabchip group at the Department of Micro and Nanotechnology (DTU-Nanotech), Technical University of Denmark (DTU), Ikerlan-IK4 (Spain) and other 16 partners from different European countries will be presented.
Resumo:
In this study, we describe a simple and efficient method for on-chip storage of reagents for point-of-care (POC) diagnostics. The method is based on gelification of all reagents required for on-chip PCR-based diagnostics as a ready-to-use product. The result reported here is a key step towards the development of a ready and easy to use fully integrated Lab-on-a-chip (LOC) system for fast, cost-effective and efficient POC diagnostics analysis.
Resumo:
This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems), starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The use of audience response systems (ARSs) or ‘clickers’ in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-basedARSquizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, theARSsummary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.
Resumo:
Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.
Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.
Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.
Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.
Resumo:
In this short paper, we present an integrated approach to detecting and mitigating cyber-attacks to modern interconnected industrial control systems. One of the primary goals of this approach is that it is cost effective, and thus whenever possible it builds on open-source security technologies and open standards, which are complemented with novel security solutions that address the specific challenges of securing critical infrastructures.
Resumo:
To alleviate practical limitations in the design of mm-wave on-chip image-reject filters, systematic design methodologies are presented. Three low-order filters with high-selectivity and low-loss characteristics are designed and compared. Transmission zeroes are created by means of a quarter-wave transmission line (filter 1) and a series LC resonator (filters 2 and 3). Implemented on SiGe, the filters occupy 0.125, 0.064, and 0.079 mm2 chip area including pads. The measured transmission
losses across 81-86 GHz E-Band frequency range are 3.6-5.2 dB for filter 1, 3.1-4.7 dB for filter 2 and 3.6-5 dB for filter 3 where rejection levels at the image band are greater than 30 dB.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
Gas fired generation currently plays an integral support role ensuring security of supply in power systems with high wind power penetrations due to its technical and economic attributes. However, the increase in variable wind power has affected the gas generation output profile and is pushing the boundaries of the design and operating envelope of gas infrastructure. This paper investigates the mutual dependence and interaction between electricity generation and gas systems through the first comprehensive joined-up, multi-vector energy system analysis for Ireland. Key findings reveal the high vulnerability of the Irish power system to outages on the Irish gas system. It has been shown that the economic operation of the power system can be severely impacted by gas infrastructure outages, resulting in an average system marginal price of up to €167/MWh from €67/MWh in the base case. It has also been shown that gas infrastructure outages pose problems for the location of power system reserve provision, with a 150% increase in provision across a power system transmission bottleneck. Wind forecast error was shown to be a significant cause for concern, resulting in large swings in gas demand requiring key gas infrastructure to operate at close to 100% capacity. These findings are thought to increase in prominence as the installation of wind capacity increases towards 2020, placing further stress on both power and gas systems to maintain security of supply.
Resumo:
his paper investigates the identification and output tracking control of a class of Hammerstein systems through a wireless network within an integrated framework and the statistic characteristics of the wireless network are modelled using the inverse Gaussian cumulative distribution function. In the proposed framework, a new networked identification algorithm is proposed to compensate for the influence of the wireless network delays so as to acquire the more precise Hammerstein system model. Then, the identified model together with the model-based approach is used to design an output tracking controller. Mean square stability conditions are given using linear matrix inequalities (LMIs) and the optimal controller gains can be obtained by solving the corresponding optimization problem expressed using LMIs. Illustrative numerical simulation examples are given to demonstrate the effectiveness of our proposed method.
Resumo:
With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.
Resumo:
This study proposes an approach to optimally allocate multiple types of flexible AC transmission system (FACTS) devices in market-based power systems with wind generation. The main objective is to maximise profit by minimising device investment cost, and the system's operating cost considering both normal conditions and possible contingencies. The proposed method accurately evaluates the long-term costs and benefits gained by FACTS devices (FDs) installation to solve a large-scale optimisation problem. The objective implies maximising social welfare as well as minimising compensations paid for generation re-scheduling and load shedding. Many technical operation constraints and uncertainties are included in problem formulation. The overall problem is solved using both particle swarm optimisations for attaining optimal FDs allocation as main problem and optimal power flow as sub-optimisation problem. The effectiveness of the proposed approach is demonstrated on modified IEEE 14-bus test system and IEEE 118-bus test system.
Resumo:
Tail biting is a serious animal welfare and economic problem in pig production. Tail docking, which reduces but does not eliminate tail biting, remains widespread. However, in the EU tail docking may not be used routinely, and some 'alternative' forms of pig production and certain countries do not allow tail docking at all. Against this background, using a novel approach focusing on research where tail injuries were quantified, we review the measures that can be used to control tail biting in pigs without tail docking. Using this strict criterion, there was good evidence that manipulable substrates and feeder space affect damaging tail biting. Only epidemiological evidence was available for effects of temperature and season, and the effect of stocking density was unclear. Studies suggest that group size has little effect, and the effects of nutrition, disease and breed require further investigation. The review identifies a number of knowledge gaps and promising avenues for future research into prevention and mitigation. We illustrate the diversity of hypotheses concerning how different proposed risk factors might increase tail biting through their effect on each other or on the proposed underlying processes of tail biting. A quantitative comparison of the efficacy of different methods of provision of manipulable materials, and a review of current practices in countries and assurance schemes where tail docking is banned, both suggest that daily provision of small quantities of destructible, manipulable natural materials can be of considerable benefit. Further comparative research is needed into materials, such as ropes, which are compatible with slatted floors. Also, materials which double as fuel for anaerobic digesters could be utilised. As well as optimising housing and management to reduce risk, it is important to detect and treat tail biting as soon as it occurs. Early warning signs before the first bloody tails appear, such as pigs holding their tails tucked under, could in future be automatically detected using precision livestock farming methods enabling earlier reaction and prevention of tail damage. However, there is a lack of scientific studies on how best to respond to outbreaks: the effectiveness of, for example, removing biters and/or bitten pigs, increasing enrichment, or applying substances to tails should be investigated. Finally, some breeding companies are exploring options for reducing the genetic propensity to tail bite. If these various approaches to reduce tail biting are implemented we propose that the need for tail docking will be reduced. © 2014 The Animal Consortium.