78 resultados para Inhomogeneous broadening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial structures of plasma parameters in a radio-frequency inductively coupled magnetic neutral loop discharge are investigated under various parameter variations using spatially resolved Langmuir probe measurements. A strong coupling between the plasma production region, in the neutral loop (NL) plane, and the axially remote substrate region is observed. The two regions are connected through the separatrices and therefore, spatial profiles in the substrate region are strongly influenced by the plasma production region and the structure of the separatrices. The electron temperature in the plasma production region peaks in the centre of the NL while the maximum in electron density is shifted radially inwards due to diffusion. Details of the structures in both regions, the production region and the substrate region, are determined through the position of the NL and the gradient of the inhomogeneous magnetic field around the NL confinement region. Parameter combinations are found providing higher plasma densities and better uniformity than in common inductively coupled plasmas without applying an additional magnetic field. The uniformity can be further improved using temporal variations of the magnetic field structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A planar inductively coupled radio-frequency (rf) magnetic neutral loop discharge has been designed. It provides diagnostic access to both the main plasma production region as well as a remote plane for applications. Three coaxial coils are arranged to generate a specially designed inhomogeneous magnetic field structure with vanishing field along a ring in the discharge-the so-called neutral loop (NL). The plasma is generated by applying an oscillating rf electric field along the NL, induced through a four-turn, planar antenna operated at 13.56 MHz. Electron density and temperature measurements are performed under various parameter variations. Collisionless electron heating in the NL region allows plasma operation at comparatively low pressures, down to 10(-2) Pa, with a degree of ionization in the order of several per cent. Conventional plasma operation in inductive mode without applying the magnetic field is less efficient, in particular in the low pressure regime where the plasma cannot be sustained without magnetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the optical spectroscopy of the eclipsing halo low-mass X-ray binary 2S 0921-630, which reveals the absorption-line radial velocity curve of the K0 III secondary star with a semiamplitude K-2=92.89+/-3.84 km s(-1), a systemic velocity gamma=34.9+/-3.3 km s(-1), and an orbital period P-orb of 9.0035+/-0.0029 days (1 sigma). Given the quality of the data, we find no evidence for the effects of X-ray irradiation. Using the previously determined rotational broadening of the mass donor and applying conservative limits on the orbital inclination, we constrain the compact object mass to be 2.0-4.3 M-circle dot (1 sigma), ruling out a canonical neutron star at the 99% level. Since the nature of the compact object is unclear, this mass range implies that the compact object is either a low-mass black hole with a mass slightly higher than the maximum possible neutron star mass (2.9 M-circle dot) or a massive neutron star. If the compact object is a black hole, it confirms the prediction of the existence of low-mass black holes, while if the object is a massive neutron star, its high mass severely constrains the equation of state of nuclear matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the leaky-mode theory is applied to take into account for the dielectric losses in millimetre waveband inhomogeneous leaky-wave antennas. A practical dielectric-filled cosine-tapered periodic leaky-wave antenna working in the 45GHz band is studied, showing how the desired sidelobes level and directivity are spoilt due to the effect of the losses. An iterative procedure is used to correct the negative effects of the losses in the radiation patterns of the leaky-wave structure. It is also shown the practical limits of the proposed correction approach. The leaky-mode theory is applied for the first time to compensate the losses in a practical leaky-wave antenna in hybrid waveguide printed circuit technology. This leaky-mode theory is validated with full-wave three-dimensional finite element method simulations of the designed antenna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dodecatungsto-silicic H4SiW12O40 and -phosphoric acids H3PW12O40 were deposited on silica by a classical impregnation technique. The resulting materials were studied by in situ Raman and infrared spectroscopy, XPS and by solid-state H-1 MAS NMR as a function of their dehydroxylation temperature. The data show that in the case of H3PW12O40 three silanol groups are protonated while in the case of H4SiW12O40 at least one acidic proton remains. Upon heating this proton reacts leading to a disordered structure and a broadening of the W-O Raman bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in domain wall mobility, caused by the presence of antinotches in single crystal BaTiO3 nanowires, have been investigated. While antinotches appeared to cause a slight broadening in the distribution of switching events, observed as a function of applied electric field (inferred from capacitance-voltage measurements), the effect was often subtle. Greater clarity of information was obtained from Rayleigh analysis of the capacitance variation with ac field amplitude. Here the magnitude of the domain wall mobility parameter (R) associated with irreversible wall movements was found to be reduced by the presence of antinotches - an effect which became more noticeable on heating toward the Curie temperature. The reduction in this domain wall mobility was contrasted with the noticeable enhancement found previously in ferroelectric wires with notches. Finite element modeling of the electric field, developed in the nanowires during switching, revealed regions of increased and decreased local field at the center of the notch and antinotch structures, respectively; the absolute magnitude of field enhancement in the notch centers was considerably greater than the field reduction in the center of the antinotches and this was commensurate with the manner in, and degree to, which domain wall mobility appeared to be affected. We therefore conclude that the main mechanism by which morphology alters the irreversible component of the domain wall mobility in ferroelectric wire structures is via the manner in which morphological variations alter the spatial distribution of the electric field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (?) is small and consistent with zero within . WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6+2.2-2.1kms-1) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5kms-1). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7+1.4-1.3kms-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positron annihilation in ammonia is analyzed using the framework of resonant annihilation [G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006)]. In particular, we show that molecular rotations can have a measurable e?ect on the annihilation rates at room temperatures. Rotation leads to broadening of vibrational Feshbach resonances. Rotations also allow a distinct contribution at low positron energies in the form of a rotational Feshbach resonance. This resonance can enhance the annihilation rate for thermalized room-temperature positrons. Comparison of theory and experiment shows that overtone and combination vibrations, including those due to inversion doubling, likely play an important role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.