122 resultados para Inherited Renal Disease
Resumo:
Background: Haem oxygenase-1 (HO-1) is a cytoprotective molecule that is reported to have a protective role in a variety of experimental models of renal injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates HO-1 gene expression; a short number of repeats (S-allele <25) increases transcription. We report the first assessment of the role of this HO-1 gene promoter polymorphism in chronic kidney disease due to autosomal dominant polycystic kidney disease (ADPKD) and IgA nephropathy (IgAN).
Methods: The DNA from 160 patients (99% Caucasian) on renal replacement therapy (RRT) was genotyped. The primary renal disease was ADPKD in 100 patients and biopsy-proven IgAN in 60 patients.
Results: Overall, the mean age at commencement of RRT was not significantly different between patients with and without an S-allele (44.1 years versus 45.0 years, P = 0.64). In patients with ADPKD, the age at commencement of RRT was comparable regardless of the HO-1 genotype (47.7 years versus 46.7 years, P = 0.59). The same was true in patients with IgAN (38.3 years versus 42.2 years, P = 0.28).
Conclusion: This suggests that the functional HO-1 promoter polymorphism does not influence renal survival in CKD due to ADPKD or IgAN.
Resumo:
OBJECTIVES:
Renal disease is increasingly regarded as an independent risk factor for vascular disease which in itself is believed to influence risk of AD. Alterations in amyloid homeostasis via reduced renal clearance of peripheral beta-amyloid (A|*beta*|) may represent another potential role for variation in renal function leading to increased risk of AD. We sought to examine estimates of glomerular filtration rate in AD and control groups.
METHODS:
AD patients were randomly recruited from the Memory Clinic of the Belfast City Hospital (n = 83). Genomic DNA was extracted from peripheral leucocytes and was genotyped for Apolipoprotein E using standard methods. Using creatinine values, age and gender, estimated Glomerular Filtration Rates (eGFR) were calculated using the isotope dilution mass spectrometry (IDMS)-traceable Modification of Diet in Renal Disease (MDRD) Study equation (using the United Kingdom National External Quality Assessment Scheme (UKNEQAS) correction factor). IDMS eGFR values were then compared between AD and control groups.
RESULTS:
Significant baseline differences in age, diastolic blood pressure, education level attained and APOE |*epsilon*|4 carriage were noted between cases and controls. The AD group had a significantly lower eGFR versus controls (69 vs 77 ml/min) which persisted after adjustment for possible confounders (p = 0.045).
CONCLUSIONS:
This case-control analysis suggests that using a relatively accurate estimate of renal function, patients with AD have greater renal impairment than cognitively normal controls. This may reflect impaired renal clearance of peripheral A|*beta*| or be a marker of shared vascular processes altering cerebral and renal functioning.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Resumo:
DIN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DIN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta 1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DIN and potential regulators of their bioactions.
Resumo:
Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.
Resumo:
Background/Aims: The NOS3 gene is a biological and positional candidate for diabetic nephropathy. However, the relationship between NOS3 polymorphisms and renal disease is inconclusive. This study aimed to clarify the association of NOS3 variants with nephropathy in individuals with type 1 diabetes. Methods: We conducted a case-control study examining all common SNPs in the NOS3 gene by a tag SNP approach. Individuals with type 1 diabetes and persistent proteinuria (cases, n = 718) were compared with individuals with type 1 diabetes but no evidence of renal disease (controls, n = 749). Our replication collection comprised 1,105 individuals with type 1 diabetes recruited to a nephropathy case group and 862 control individuals with normal urinary albumin excretion rates. Meta-analysis was conducted for SNPs where more than three genotype datasets were available. Results: A novel association was identified in the discovery collection (rs1800783, p(genotype) = 0.006, p(allele) = 0.002, OR = 1.26, 95% CI: 1.08-1.47) and supported by independent replication using a tag SNP (rs4496877, pairwise r(2) = 0.96 with rs1800783) in the replication collection (p(genotype) = 0.002, p(allele) = 0.0006, OR = 1.27, 95% CI: 1.10-1.45). Conclusion: The A allele of rs1800783 is a significant risk factor for nephropathy in individuals with type 1 diabetes, and further comprehensive studies are warranted to confirm the definitive functional variant in the NOS3 gene. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Aim: To explore the impact of being a family carer to patients with stage 5 chronic kidney disease managed without dialysis.
Background: Increasing numbers of patients with renal disease worldwide are making the decision not to embark on dialysis. This group has significant physical and psychological symptom burdens similar to or greater than those in advanced cancer patients. Little is known about the impact on family carers.
Design: Exploratory, qualitative design.
Methods: The study was undertaken with 19 carers caring for patients managed in a Renal Supportive Care Service in the UK between 2006–2008. Sixty-one semi-structured interviews and detailed field notes inform the analysis.
Findings: ‘Caring from diagnosis to death’ was the overarching theme illustrated by three sub-themes: (i) Caregiver's plight – making sense of the disease and potential deterioration; (ii) Having to care indefinitely; and (iii) Avoiding talk of death. ‘Caring from diagnosis to death’ coincides with an original concept analysis of renal supportive care, which is considered an adjunct to the management of patients with renal disease at all stages of their illness.
Conclusion: There is a clear need for further research internationally and theory-based nursing interventions to support carers of patients managed without dialysis. The development of a holistic, integrated care pathway based on carer perspectives, which includes identification of information needs related to original diagnosis, associated comorbidities, treatment options, prognosis, and assistance in developing strategies to manage communication with patients as the end of life approaches, is required.
Resumo:
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Resumo:
Increased plasma levels of cellular adhesion molecules (CAMs) have been shown to be predictors of all cause mortality in individuals with chronic renal failure 12 and patients with end-stage renal disease receiving haemodialysis 3. In renal transplant recipients the predictive value of CAMs has not been well characterised. The aim of this study was to assess the relationship between CAMs and all-cause mortality during prospective follow-up of a renal transplant cohort.
Resumo:
IgA nephropathy (IgAN) is a frequent cause of end-stage renal disease (ESRD) and recurrent disease causes deterioration and graft loss in transplant recipients. No definitive management is known to reduce the risk or severity of recurrent IgAN, and the evidence to support the use of renin-angiotensin system blockade in such patients is limited.
Resumo:
• PURPOSE: To evaluate retinal pigment epithelial (RPE) atrophy in patients with Stargardt disease using autofluorescence imaging (AF). • DESIGN: Retrospective observational case series. • METHODS: Demographics, best-corrected visual acuity (BCVA), AF images, and electrophysiology responses (group 1, macular dysfunction; group 2, macula + cone dysfunction; group 3, macula + cone-rod dysfunction) were evaluated at presentation and follow-up in a group of 12 patients (24 eyes) with Stargardt disease. The existence, development, and rate of enlargement of areas of RPE atrophy over time were evaluated using AF imaging. A linear regression model was used to investigate the effects of AF and electrophysiology on rate of atrophy enlargement and BCVA, adjusting for age of onset and duration of disease. • RESULTS: Eight male and 4 female patients (median age 42 years; range 24-69 years) were followed for a median of 41.5 months (range 13-66 months). All 12 patients had reduced AF compatible with RPE atrophy at presentation and in all patients the atrophy enlarged during follow-up. The mean rate of atrophy enlargement for all patients was 1.58 mm /y (SD 1.25 mm /y; range 0.13-5.27 mm /y). Only the pattern of functional loss present as detected by electrophysiology was statistically significantly associated with the rate of atrophy enlargement when correcting for other variables (P <.001), with patients in group 3 (macula + cone-rod dysfunction) having the fastest rate of atrophy enlargement (1.97 mm /y, SD 0.70 mm /y) (group 1 [macula] 1.09 mm /y, SD 0.53 mm /y; group 2 [macula + cone] 1.89 mm /y, SD 2.27 mm /y). • CONCLUSION: Variable rates of atrophy enlargement were observed in patients with Stargardt disease. The pattern of functional loss detected on electrophysiology was strongly associated with the rate of atrophy enlargement over time, thus serving as the best prognostic indicator for patients with this inherited retinal disease. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-ß1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-ß1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-ß1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-ß1 signaling pathway, including the TGF-ß receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-ß receptor type 1 and the response to TGF-ß1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-ß1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.
Resumo:
OBJECTIVE - To examine the relationship between retinal vascular geometry parameters and development of incident renal dysfunction in young people with type 1 diabetes. RESEARCH DESIGN AND METHODS - This was a prospective cohort study of 511 adolescents with type 1 diabetes of at least 2 years duration, with normal albumin excretion rate (AER) and no retinopathy at baseline while attending an Australian tertiary-care hospital. AER was quantified using three overnight, timed urine specimen collections and early renal dysfunction was defined as AER >7.5 µg/min. Retinal vascular geometry (including length-to-diameter ratio [LDR] and simple tortuosity [ST]) was quantified from baseline retinal photographs. Generalized estimating equations were used to examine the relationship between incident renal dysfunction and baseline venular LDR and ST, adjusting for age, diabetes duration, glycated hemoglobin (A1C), blood pressure (BP), BMI, and cholesterol. RESULTS - Diabetes duration at baseline was 4.8 (IQR 3.3-7.5) years. After amedian 3.7 (2.3-5.7) years follow-up, 34% of participants developed incident renal dysfunction. In multivariate analysis, higher retinal venular LDR (odds ratio 1.7, 95% CI 1.2-2.4; quartile 4 vs. 1-3) and lower venular ST (1.6, 1.1-2.2; quartile 1 vs. 2-4) predicted incident renal dysfunction. CONCLUSIONS - Retinal venular geometry independently predicted incident renal dysfunction in young people with type 1 diabetes. These noninvasive retinal measures may help to elucidate early mechanistic pathways for microvascular complications. Retinal venular geometry may be a useful tool to identify individuals at high risk of renal disease early in the course of diabetes. © 2012 by the American Diabetes Association.
Resumo:
Genetic risk factors for chronic kidney disease (CKD) are being identified through international collaborations. By comparison, epigenetic risk factors for CKD have only recently been considered using population-based approaches. DNA methylation is a major epigenetic modification that is associated with complex diseases, so we investigated methylome-wide loci for association with CKD. A total of 485,577 unique features were evaluated in 255 individuals with CKD (cases) and 152 individuals without evidence of renal disease (controls). Following stringent quality control, raw data were quantile normalized and β values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls with resultant P values adjusted for multiple testing. Genes with significantly increased and decreased levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways in Partek Genomics Suite. Twenty-three genes, where more than one CpG per loci was identified with Padjusted < 10−8, demonstrated significant methylation changes associated with CKD and additional support for these associated loci was sought from published literature. Strong biological candidates for CKD that showed statistically significant differential methylation include CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2, and PRKAG2 genes; several genes are differentially methylated in kidney tissue and RNA-seq supports a functional role for differential methylation in ELMO1 and PRKAG2 genes. This study reports the largest, most comprehensive, genome-wide quantitative evaluation of DNA methylation for association with CKD. Evidence confirming methylation sites influence development of CKD would stimulate research to identify epigenetic therapies that might be clinically useful for CKD.