47 resultados para Infrared emissions
Resumo:
A structurally pure, near-infrared emissive Nd-(5,7-dichloro-8-hydroxyquinoline)4 tetrakis complex has been synthesized. When incorporated as a dopant in the blue emissive, hole conducting polymer poly(N-vinylcarbazole), PVK, sensitized neodymium ion emission was observed following photo-excitation of the polymer host. OLED devices were fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. An external quantum efficiency of 1 x 10(-3)% and a near-infrared irradiance of 2.0 nW/mm(2) at 25 mA/mm(2) and 20 V was achieved using glass/ITO/PEDOT/ PVK:Nd-(5,7-dichloro-8-hydroxyquinoline)(4)/Ca/Al devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In Case T-130/06 Drax Power and others v European Commission, the Court of First Instance held that an application by Drax Power and others for annulment of Commission Decision (C(2006)426 final of 22 February 2006 concerning a proposed amendment to the National Allocation Plan notified by the UK in accordance with the EU Emissions Trading Directive was inadmissable. The Court ruled that the applicants could not be considered to be 'directly concerned' by the contested decision within the meaning of the fourth paragraph of Article 230 of the European Treaty, on legal standing: 'Any natural or legal person may, under the same conditions, institute proceedings against a decision addressed to that person or against a decision, which, although in the form of a regulation or a decision addressed to another persion, is of direct and individual concern to the former...'
Resumo:
Highly luminescent anionic samarium(III) beta-diketonate and dipicolinate complexes were dissolved in the imidazolium ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. The solubility of the complexes in the ionic liquid was ensured by a careful choice of the countercation of the samarium(III) complex. The samarium(III) complexes that were considered are [C(6)mim][SM(tta)(4)], where tta is 2-thenoyltrifluoroacetonate; [C(6)mim][Sm(nta)(4)], where nta is 2-naphthoyltrifluoroacetonate; [C(6)mim][Sm(hfa)(4)], where hfa is hexafluoroacetylacetonate; and [choline](3)-[Sm(dpa)(3)], where dpa is pyridine-2,6-dicarboxylate (dipicolinate) and [choline](+) is (2-hydroxyethyl)trimethyl ammonium. The crystal structures of the tetrakis samarium(III) P-diketonate complexes revealed a distorted square antiprismatic coordination for the samarium(III) ion in all three cases. Luminescence spectra were recorded for the samarium(III) complexes dissolved in the imidazolium ionic liquid as well as in a conventional solvent, that is, acetonitrile or water for the beta-diketonate and dipicolinate complexes, respectively. These experiments demonstrate that [C(6)mim][Tf2N] is a suitable spectroscopic solvent for studying samarium(III) luminescence. High-luminescence quantum yields were observed for the samarium(III) beta-diketonate complexes in solution.
Resumo:
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS 1915+105. For Sco X-1 and Cyg X-2, the polarization levels at 2.4 µm are 1.3+/-0.10% and 5.4+/-0.7%, respectively, which is greater than the polarization level at 1.65 µm. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jet. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step towards probing the ordering, alignment, and variability of the outflow magnetic field, in a region closer to the central accreting object than is observed in the radio band.
Resumo:
The near-infrared luminescence properties of three (E)-N-hexadecyl-N',N'-dimethylamino-stilbazolium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato) lanthanide(III) complexes are described. These three complexes, containing trivalent neodymium, erbium and ytterbium, respectively, show near-infrared luminescence in acetonitrile solution upon UV irradiation. Luminescence decay times have been measured. The complexes consist of a positively charged hemicyanine chromophore with a long alkyl chain and a tetrakis(pyrazolonato) lanthanide(III) anion. Because of the absence of an alpha-hydrogen atom in the pyrazolonato ligands, and because of the saturation of the coordination sphere by four bidentate ligands, the luminescence properties are enhanced when compared to, e.g. quinolinate complexes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.
Resumo:
The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.
Resumo:
Near-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)(3). In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups. Photophysical investigations of solution samples of the complexes demonstrate that all complexes exhibit relatively long luminescence lifetimes in nondeuteurated solvents. Luminescence studies of powder samples have also been recorded for examination of the properties of NIR complexes in the solid state for potential material applications. The results underline the effective shielding of the lanthanide by the twelve phenyl groups of the tpip ligands and the reduction of high-energy vibrations in close proximity to the lanthanide, both features important in the design of NIR emitting lanthanide complexes.
Resumo:
Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)(3) complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at similar to 1065 nm. was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the F-4(3/2) -> I-4(11/2) levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm(2) and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)(3)/Ca/Al devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Anhydrous neodymium(III) iodide and erbium(Ill) iodide were dissolved in carefully dried batches of the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(12)mim][Tf2N]. Provided that the ionic liquid had a low water content, intense near-infrared emission could be observed for both the neodymium(III) ion and for the erbium(III) ion. Luminescence lifetimes have been measured, and the quantum yield of the neodymium(III) sample has been measured. Exposure of the hygroscopic samples to atmospheric moisture conditions caused a rapid decrease of the luminescence intensities. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.
Resumo:
A new type of near-infrared emitting rare-earth complex has been synthesised, consisting of three bis(perfluoroalkylsulfonyl)imide ligands and one 1,10-phenanthroline molecule. The chelate rings formed by the rare-earth ion and the bidentate ligands do not contain any carbon atoms and can hence be considered as 'inorganic' chelate rings. The absence of C-H stretching vibration modes in the first coordination sphere of the rare-earth ion and the presence of a light-harvesting moiety (1,10-phenanthroline) bound to the rare-earth ion result in a complex that can be efficiently excited and exhibits intense near-infrared luminescence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown that ionic liquids are promising solvents for near-infrared emitting lanthanide complexes, because ionic liquids are polar non-coordinating solvents that can solubilize lanthanide complexes. Neodymium(III) tosylate, bromide, triflate and sulfonylimide complexes were dissolved in 1-alkyl-3-methylimidazolium ionic liquids that contain the same anion as the neodymium(III) complexes. Near-infrared luminescence spectra of these neodymium(III) salts were measured by direct excitation of the neodymium(III) ion. The absorption spectra show detailed crystal-field fine structure and Judd-Ofelt parameters have been determined. Intense near-infrared luminescence was observed upon ligand excitation for neodymium(III) complexes with 1,10-phenanthroline or beta-diketonate ligands. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The design, fabrication, and characterization of single-screen perturbed frequency-selective surfaces (FSS) at infrared frequencies for single and multiband applications are reported. Single-band FSS based on parallel strips have been perturbed by decreasing the length of every second strip within the array in order to achieve dual band-stop responses. The same principle has been extended to design FSS exhibiting tri- and quadreflection bands. In addition, strip FSSs have been perturbed by replacing every second strip for a metallic ring, resulting in dual-band filters with different polarization responses of the bands. These designs have been fabricated on large thin polyimide membranes using sacrificial silicon wafers. An oxide interlayer between the sacrificial silicon wafer and the polyimide membrane is employed to stop the silicon etching and is wet etched subsequently by a solution of ammonium fluoride and acetic acid that does not attack either the polyimide membrane or the aluminium FSS elements. Fourier transform infrared spectroscopy measurements are presented to validate the predicted responses of the fabricated prototypes.