36 resultados para Information Models
Resumo:
Building Information Modelling (BIM) is growing in pace, not only in design and construction stages, but also in the analysis of facilities throughout their life cycle. With this continued growth and utilisation of BIM processes, comes the possibility to adopt such procedures, to accurately measure the energy efficiency of buildings, to accurately estimate their energy usage. To this end, the aim of this research is to investigate if the introduction of BIM Energy Performance Assessment in the form of software analysis, provides accurate results, when compared with actual energy consumption recorded. Through selective sampling, three domestic case studies are scrutinised, with baseline figures taken from existing energy providers, the results scrutinised and compared with calculations provided from two separate BIM energy analysis software packages. Of the numerous software packages available, criterion sampling is used to select two of the most prominent platforms available on the market today. The two packages selected for scrutiny are Integrated Environmental Solutions - Virtual Environment (IES-VE) and Green Building Studio (GBS). The results indicate that IES-VE estimated the energy use in region of ±8% in two out of three case studies while GBS estimated usage approximately ±5%. The findings indicate that the introduction of BIM energy performance assessment, using proprietary software analysis, is a viable alternative to manual calculations of building energy use, mainly due to the accuracy and speed of assessing, even the most complex models. Given the surge in accurate and detailed BIM models and the importance placed on the continued monitoring and control of buildings energy use within today’s environmentally conscious society, this provides an alternative means by which to accurately assess a buildings energy usage, in a quick and cost effective manner.
Resumo:
We study the sensitivity of a MAP configuration of a discrete probabilistic graphical model with respect to perturbations of its parameters. These perturbations are global, in the sense that simultaneous perturbations of all the parameters (or any chosen subset of them) are allowed. Our main contribution is an exact algorithm that can check whether the MAP configuration is robust with respect to given perturbations. Its complexity is essentially the same as that of obtaining the MAP configuration itself, so it can be promptly used with minimal effort. We use our algorithm to identify the largest global perturbation that does not induce a change in the MAP configuration, and we successfully apply this robustness measure in two practical scenarios: the prediction of facial action units with posed images and the classification of multiple real public data sets. A strong correlation between the proposed robustness measure and accuracy is verified in both scenarios.
Resumo:
The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of Can(Plan) into Can(Plan)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of lookahead planning.
Resumo:
BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.
RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.
CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties.