50 resultados para Indirect ELISA
Resumo:
Circulating antigliadin antibody has been described in patients with gluten enteropathy although the prevalence varies in different studies. It has been suggested that the investigation for antigliadin antibody might be useful as a screening test. The object of the present study was to evaluate two different techniques for assaying these antibodies - an indirect immunofluorescent method and an enzyme-linked immunosorbent assay (ELISA). Antibodies were assayed in the sera of 102 patients in whom jejunal biopsies were also obtained. The specificity of both tests was greater than 95%, and the correlation between the presence of antibody and histology was significant (p <0.005), though the sensitivity of each test was less than 70%.
Resumo:
A sensitive and specific monoclonal ELISA for the determination of tissue bound furazolidone metabolite 3-amino-2-oxazolidinone (AOZ) is described. The procedure enables the detection of AOZ in matrix supernatant after homogenisation, protease treatment, acid hydrolysis and derivatisation of AOZ released from the tissue by o-nitrobenzaldehyde. The formed p-nitrophenyl 3-amino-2-oxazolidinone (NPAOZ) is determined by ELISA calibrated with matrix-matched standards in the concentration range of 0.05-5.0 mu g l(-1). The assay was validated according to criteria set down by Commission Decision 2002/657/EC for the performance and validation of analytical methods for chemical residues. Detection capability, set on the basis of acceptance of no false negative results, was 0.4 mu g kg(-1) for shrimp, poultry, beef and pork muscle. This sensitivity approaches the established confirmatory LC-MS/MS able to quantify tissue-bound AOZ at levels as low as 0.3 mu g kg(-1). An excellent correlation of results obtained by ELISA and LC/MS-MS within the concentration range 0-32.1 mu g kg(-1) was found in the naturally contaminated shrimp samples (r = 0.999, n = 8). A similar con-elation was found for the incurred poultry samples within the concentration range of 0-10.5 mu g kg(-1) (r = 0.99, n = 8). (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The common prior assumption justifies private beliefs as posterior probabilities when updating a common prior based on individual information. We dispose of the common prior assumption for a homogeneous oligopoly market with uncertain costs and firms entertaining arbitrary priors about other firms' cost-type. We show that true prior beliefs can not be evolutionarily stable when truly expected profit measures (reproductive) success.
Resumo:
Grass biomethane surpasses the 60% greenhouse gas (GHG) savings relative to the fossil fuel replaced required by EU Directive 2009/28/EC. However, there are growing concerns that when the indirect effects of biofuels are taken into account, GHG savings may become negative. There has been no research to date into the indirect effects of grass biomethane; this paper aims to fill that knowledge gap. A causal-descriptive assessment is carried out and identifies the likely indirect effect of a grass biomethane industry in Ireland as a reduction in beef exports to the UK. Three main scenarios are then analyzed: an increase in indigenous UK beef production, an increase in beef imported to the UK from other countries (EU, New Zealand and Brazil), and a decrease in beef consumption leading to increased poultry consumption. The GHG emissions from each of these scenarios are determined and the resulting savings relative to fossil diesel vary between -636% and 102%. The significance of the findings is then discussed. It is the view of the authors that, while consideration of indirect effects is important, an Irish grass biomethane industry cannot be held accountable for the associated emissions. A global GHG accounting system is therefore proposed; however, the difficulty of implementing such a system is acknowledged, as is its probable ineffectualness. Such a system would not treat the source of the problem - rising consumption. The authors conclude that the most effective method of combating the indirect effects of biofuels is a reduction in general consumption. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.
Resumo:
In recent years, there has been a move towards the development of indirect structural health monitoring (SHM)techniques for bridges; the low-cost vibration-based method presented in this paper is such an approach. It consists of the use of a moving vehicle fitted with accelerometers on its axles and incorporates wavelet analysis and statistical pattern recognition. The aim of the approach is to both detect and locate damage in bridges while reducing the need for direct instrumentation of the bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform as when the axle passes over a damaged section, any discontinuity in the signal would affect the wavelet coefficients. Based on these coefficients, a damage indicator is formulated which can distinguish between different damage levels. However, it is found to be difficult to quantify damage of varying levels when the vehicle’s transverse position is varied between bridge crossings. In a real bridge field experiment, damage was applied artificially to a steel truss bridge to test the effectiveness of the indirect approach in practice; for this purpose a two-axle van was driven across the bridge at constant speed. Both bridge and vehicle acceleration measurements were recorded. The dynamic properties of the test vehicle were identified initially via free vibration tests. It was found that the resulting damage indicators for the bridge and vehicle showed similar patterns, however, it was difficult to distinguish between different artificial damage scenarios.
Resumo:
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities. © 2012 Bentham Science Publishers.
Resumo:
Indirect bridge monitoring methods, using the responses measured from vehicles passing over bridges, are under development for about a decade. A major advantage of these methods is that they use sensors mounted on the vehicle, no sensors or data acquisition system needs to be installed on the bridge. Most of the proposed methods are based on the identification of dynamic characteristics of the bridge from responses measured on the vehicle, such as natural frequency, mode shapes, and damping. In addition, some of the methods seek to directly detect bridge damage based on the interaction between the vehicle and bridge. This paper presents a critical review of indirect methods for bridge monitoring and provides discussion and recommendations on the challenges to be overcome for successful implementation in practice.