43 resultados para Illinois. Bureau of Animal Welfare.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
The UK coalition government is bound by equality duties to have regard to the impact of its policies on various groups, including women. This article investigates how far this legislative commitment is influencing debates about current welfare reforms, especially plans for ‘universal credit’ (a new means-tested benefit).
The authors draw on findings from recent studies of within-household distribution from a gender perspective, including in particular their own qualitative research involving separate semi-structured interviews with men and women in 30 low/moderate-income couples in Britain. A major aim of this research was to facilitate more nuanced analysis of the effects of welfare reforms in terms of gender roles and relationships within the household.
This article therefore explores how far these findings, together with key principles for assessing the gender impact of welfare reforms, can be used to assess ‘universal credit’, and to what extent they influenced the UK government’s proposals and analysis.
Resumo:
Examination of a selection of shell and bone from archaeological assemblages excavated at Niah Cave and Gua Sireh, both of which are located in Sarawak, Borneo, has revealed the deliberate application of coloured material to one or more surfaces. Small fragments of the surface colourant were analysed using a variety of techniques, including microscopy, energy dispersive microwave analysis and infra-red spectrophotometry. These procedures established that, although red in colour, the applied coating in each instance was not red iron oxide. It is suggested that, based on the chemical components present, this coating was a tree resin or a similar organic substance. The paper further reports the presence of enhanced chloride values in the colourant recovered from the ancient human cranial fragment tested. It is suggested that elevated concentrations of this trace element may indicate that the site, the human remains or ingredients within the colourant were once in close proximity to the sea. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.
Resumo:
BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.
DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.
CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.