40 resultados para IMPAIRED GLUCOSE-TOLERANCE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various parameters of coagulation and fibrinolysis were measured in 13 men (aged 54 +/- 3 yr) with non-insulin-dependent diabetes mellitus (NIDDM) before and after 12-14 wk of exercise training. Subjects exercised for 30 min 3 times/wk at 70% of maximum O2 consumption (VO2max). Training increased VO2max by 12.5% but did not alter body weight, relative body fat, blood pressure, cholesterol, triglycerides, or high-density lipoprotein cholesterol. Slight downward trends were apparent for fasting glucose and insulin, but glycosylated hemoglobin was unchanged. There were no changes in coagulation parameters of plasminogen, hematocrit, or alpha 2-antiplasmin. Plasma fibrinogen (303 +/- 24.2 vs. 256 +/- 12.3 mg/dl) and fibronectin (380 +/- 41.9 vs. 301 +/- 22.2 micrograms/ml) were significantly reduced (P less than 0.02) by exercise conditioning. Three assays of fibrinolytic activity (tissue plasminogen activator, euglobulin lysis time, and an isotopic measure of fibrinolysis) confirmed that neither basal fibrinolysis nor the fibrinolytic responses to venous occlusion and maximal exercise were significantly altered. Exercise conditioning may have antithrombotic effects in NIDDM by reducing plasma fibrinogen and fibronectin. Although the significance of the fall in fibronectin awaits further studies, the reduction in plasma fibrinogen gives a rationale for the use of exercise training in men with NIDDM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A six-year prospective study of 144 newly diagnosed, symptomatic diabetic patients aged 40-69 years showed that 21 (15%) required insulin therapy, commencing 1-61 months after diagnosis. The plasma insulin response to oral glucose was assessed at the time of diagnosis. All 12 patients with very low peak insulin response (less than or equal to 6 mU/l) required insulin therapy. Thirty-six patients had an intermediate insulin response (greater than 6 less than or equal to 18 mU/l); of these, 7 with a mean weight 88% (range 73-96%) of average body weight required insulin, while 29 with a mean weight 117% (range 98-158%) of average body weight, did not. Ninety-six patients had a peak insulin response (greater than 18 mU/l); 2 patients whose weights were 96% and 100% of average body weight, required insulin, while the remainder did not. Consideration of initial body weight and peak insulin response provides a useful prediction of the eventual need for insulin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine associations of fasting C-peptide, body mass index (BMI), and maternal glucose with the risk of preeclampsia in a multicenter multinational study. Study Design: We conducted a secondary analysis of a blinded observational cohort study. Subjects underwent a 75-g oral glucose tolerance test at 24-32 weeks' gestation. Associations of preeclampsia with fasting C-peptide, BMI, and maternal glucose were assessed with the use of multiple logistic regression analyses and adjustment for potential confounders. Results: Of 21,364 women who were included in the analyses, 5.2% had preeclampsia. Adjusted odds ratios for preeclampsia for 1 SD higher fasting C-peptide (0.87 ug/L), BMI (5.1 kg/m), and fasting (6.9 mg/dL), 1-hour (30.9 mg/dL), and 2-hour plasma glucose (23.5 mg/dL) were 1.28 (95% confidence interval [CI], 1.20-1.36), 1.60 (95% CI, 1.60-1.71), 1.08 (95% CI, 1.00-1.16), 1.19 (95% CI, 1.11-1.28), and 1.21 (95% CI,1.13-1.30), respectively. Conclusion: Results indicate strong, independent associations of fasting C-peptide and BMI with preeclampsia. Maternal glucose levels (below diabetes mellitus) had weaker associations with preeclampsia, particularly after adjustment for fasting C-peptide and BMI. © 2010 Mosby, Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction
Despite excellent first year outcomes in kidney transplantation, there remain significant long-term complications related to new-onset diabetes after transplantation (NODAT). The purpose of this study was to validate the findings of previous investigations of candidate gene variants in patients undergoing a protocolised, contemporary immunosuppression regimen, using detailed serial biochemical testing to identify NODAT development.

Methods
One hundred twelve live and deceased donor renal transplant recipients were prospectively followed-up for NODAT onset, biochemical testing at days 7, 90, and 365 after transplantation. Sixty-eight patients were included after exclusion for non-white ethnicity and pre-transplant diabetes. Literature review to identify candidate gene variants was undertaken as described previously.

Results
Over 25% of patients developed NODAT. In an adjusted model for age, sex, BMI, and BMI change over 12 months, five out of the studied 37 single nucleotide polymorphisms (SNPs) were significantly associated with NODAT: rs16936667:PRDM14 OR 10.57;95% CI 1.8–63.0;p = 0.01, rs1801282:PPARG OR 8.5; 95% CI 1.4–52.7; p = 0.02, rs8192678:PPARGC1A OR 0.26; 95% CI 0.08–0.91; p = 0.03, rs2144908:HNF4A OR 7.0; 95% CI 1.1–45.0;p = 0.04 and rs2340721:ATF6 OR 0.21; 95%CI 0.04–1.0; p = 0.05.

Conclusion
This study represents a replication study of candidate SNPs associated with developing NODAT and implicates mTOR as the central regulator via altered insulin sensitivity, pancreatic β cell, and mitochondrial survival and dysfunction as evidenced by the five SNPs.

General significance
1) Highlights the importance of careful biochemical phenotyping with oral glucose tolerance tests to diagnose NODAT in reducing time to diagnosis and missed cases.
2)This alters potential genotype:phenotype association.
3)The replication study generates the hypothesis that mTOR signalling pathway may be involved in NODAT development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Obesity in the offspring of women with hyperglycemia during pregnancy has been reported, but the results are conflicting. This study examined the association of hyperglycemia during pregnancy and anthropometry in 5- to 7-year-old offspring whose mothers participated in the Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) Study at the Belfast Centre.

RESEARCH DESIGN AND METHODS: Women in the HAPO study underwent a 75-g oral glucose tolerance test (OGTT) at approximately 28 weeks of gestation. Mothers and caregivers remained blinded to the results unless the fasting plasma glucose (FPG) concentration was >5.8 mmol/L or the 2-h plasma glucose (2hPG) concentration was >11.1 mmol/L. Offspring weight, height, and skin-fold thicknesses (triceps, subscapular, and suprailiac) were measured at age 5-7 years. Overweight, obesity, and extreme obesity were defined as a BMI z score ≥85th, ≥95th, and ≥99th percentile, respectively, based on the 1990 British Growth Standard.

RESULTS: Belfast HAPO offspring (n = 1,320, 82%) aged 5-7 years attended for follow-up. Using multiple regression, maternal FPG, 1h PG, and 2hPG did not show any relation to offspring BMI z score or offspring skin-fold sum independent of maternal BMI at OGTT and offspring birth weight z score. This lack of association with maternal glycemia persisted with the offspring BMI z score expressed as ≥85th, ≥95th, or 99th percentile, and the sum of skin folds expressed as ≥90th percentile specific for sex. The initially significant relation between FPG and all offspring adiposity measures was explained by maternal BMI at the OGTT.

CONCLUSIONS: After adjustment for maternal BMI at the OGTT, higher maternal FPG concentration during pregnancy (short of diabetes) is no longer a risk factor for obesity, as reflected by BMI and the sum of skin folds in offspring aged 5-7 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frog skin host-defense peptide tigerinin-1R stimulates insulin release in vitro and improves glucose tolerance and insulin sensitivity in animal models of type 2 diabetes. This study extends these observation by investigating the molecular mechanisms of action underlying the beneficial metabolic effects of the analogue [Arg4]tigerinin-1R in mice with diet induced obesity, glucose intolerance and insulin resistance. The study also investigates the electrophysiological effects of the peptide on KATP and L-type Ca2+ channels in BRINBD11 clonal β cells. Non-fasting plasma glucose and glucagon concentrations were significantly (P<0.05) decreased and plasma insulin increased by twice daily treatment with [Arg4]tigerinin-1R (75 nmol.kg-1 body weight) for 28 days. Oral and intraperitoneal glucose tolerance were significantly (P < 0.05) improved accompanied by enhanced secretion and action of insulin. The peptide blocked KATP channels and, consistent with this, improved beta cell responses of isolated islets to a range of secretagogues. Peptide administration resulted in up-regulation of key functional genes in islets involved insulin secretion (Abcc8, Kcnj11, Cacna1c and Slc2a2) and in skeletal muscle involved with insulin action (Insr, Irs1, Pdk1, Pik3ca, and Slc2a4). These observations encourage further development of tigerinin-1R analogues for the treatment of patients with type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala(8)-substituted analogues of GLP-1, (Abu(8))GLP-1 and (Val(8) GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu(8))GLP-1 and (Val(8))GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu(8))GLP-1 and (Val(8))GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val(8))GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu(8))GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val(8))GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala(8) in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val(8))GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia is highly resistant to antimicrobial peptides and we hypothesized that the conversion of UDP-glucose to UDP-glucuronic acid, a reaction catalysed by the enzyme UDP-glucose dehydrogenase (Ugd) would be important for this resistance. The genome of B. cenocepacia contains three predicted ugd genes: ugd(BCAL2946), ugd(BCAM0855) and ugd(BCAM2034), all of which were individually inactivated. Only inactivation of ugd(BCAL2946) resulted in increased sensitivity to polymyxin B and this sensitivity could be overcome when either ugd(BCAL2946) or ugd(BCAM0855) but not ugd(BCAM2034) was expressed from plasmids. The growth of a conditional ugd(BCAL2946) mutant, created in the Deltaugd(BCAM0855) background, was significantly impaired under non-permissive conditions. Growth could be rescued by either ugd(BCAL2946) or ugd(BCAM0855) expressed in trans, but not by ugd(BCAM2034). Biochemical analysis of the purified, recombinant forms of Ugd(BCAL2946) and Ugd(BCAM0855) revealed that they are soluble homodimers with similar in vitro Ugd activity and comparable kinetic constants for their substrates UDP-glucose and NAD(+). Purified Ugd(BCAM2034) showed no in vitro Ugd activity. Real-time PCR analysis showed that the expression of ugd(BCAL2946) was 5.4- and 135-fold greater than that of ugd(BCAM0855) and ugd(BCAM2034), respectively. Together, these data indicate that the combined activity of Ugd(BCAL2946) and Ugd(BCAM0855) is essential for the survival of B. cenocepacia but only the most highly expressed ugd gene, ugd(BCAL2946), is required for polymyxin B resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.