38 resultados para IEEE 1901
Resumo:
The upcoming IEEE 802.11ac standard boosts the throughput of previous IEEE 802.11n by adding wider 80 MHz and 160 MHz channels with up to 8 antennas (versus 40 MHz channel and 4 antennas in 802.11n). This necessitates new 1-8 stream 256/512-point Fast Fourier Transform (FFT) / inverse FFT (IFFT) processing with 80/160 MSample/s throughput. Although there are abundant related work, they all fail to meet the requirements of IEEE 802.11ac FFT/IFFT on point size, throughput and multiple data streams at the same time. This paper proposes the first software defined FFT/IFFT architecture as a solution. By making use of a customised soft stream processor on FPGA, we show how a software defined FFT architecture can meet all the requirements of IEEE 802.11ac with low cost and high resource efficiency. When compared with dedicated Xilinx FFT core, our implementation exhibits only one third of the resources also up to three times of resource efficiency.
Resumo:
Synchrophasors have become an important part of the modern power system and numerous applications have been developed covering wide-area monitoring, protection and control. Most applications demand continuous transmission of synchrophasor data across large geographical areas and require an efficient communication framework. IEEE C37.118-2 evolved as one of the most successful synchrophasor communication standards and is widely adopted. However, it lacks a predefined security mechanism and is highly vulnerable to cyber attacks. This paper analyzes different types of cyber attacks on IEEE C37.118-2 communication system and evaluates their possible impact on any developed synchrophasor application. Further, the paper also recommends an efficent security mechanism that can provide strong protection against cyber attacks. Although, IEEE C37.118-2 has been widely adopted, there is no clear understanding of the requirements and limitations. To this aim, the paper also presents detailed performance evaluation of IEEE C37.118-2 implementations which could help determine required resources and network characteristics before designing any synchrophasor application.
Resumo:
The integration of an ever growing proportion of large scale distributed renewable generation has increased the probability of maloperation of the traditional RoCoF and vector shift relays. With reduced inertia due to non-synchronous penetration in a power grid, system wide disturbances have forced the utility industry to design advanced protection schemes to prevent system degradation and avoid cascading outages leading to widespread blackouts. This paper explores a novel adaptive nonlinear approach applied to islanding detection, based on wide area phase angle measurements. This is challenging, since the voltage phase angles from different locations exhibit not only strong nonlinear but also time-varying characteristics. The adaptive nonlinear technique, called moving window kernel principal component analysis is proposed to model the time-varying and nonlinear trends in the voltage phase angle data. The effectiveness of the technique is exemplified using both DigSilent simulated cases and real test cases recorded from the Great Britain and Ireland power systems by the OpenPMU project.