56 resultados para ICC
Resumo:
Several populations of interstitial cells of Cajal (ICC) exist in the bladder, associated with intramural nerves. Although ICC respond to exogenous agonists, there is currently no evidence of their functional innervation. The objective was to determine whether bladder ICC are functionally innervated. Guinea-pig bladder tissues, loaded with fluo-4AM were imaged with fluorescent microscopy and challenged with neurogenic electrical field stimulation (EFS). All subtypes of ICC and smooth muscle cells (SMC) displayed spontaneous Ca2+-oscillations. EFS (0.5Hz, 2Hz, 10Hz) evoked tetrodotoxin (1µM)-sensitive Ca2+-transients in lamina propria ICC (ICC-LP), detrusor ICC and perivascular ICC (PICC) associated with mucosal microvessels. EFS responses in ICC-LP were significantly reduced by atropine or suramin. SMC and vascular SMC (VSM) also responded to EFS. Spontaneous Ca2+-oscillations in individual ICC-LP within networks occurred asynchronously whereas EFS evoked coordinated Ca2+-transients in all ICC-LP within a field of view. Non-correlated Ca2+-oscillations in detrusor ICC and adjacent SMC pre-EFS, contrasted with simultaneous neurogenic Ca2+ transients evoked by EFS. Spontaneous Ca2+-oscillations in PICC were little affected by EFS, whereas large Ca2+-transients were evoked in pre-EFS quiescent PICC. EFS also increased the frequency of VSM Ca2+-oscillations. In conclusion, ICC-LP, detrusor ICC and PICC are functionally innervated. Interestingly, Ca2+-activity within ICC-LP networks and between detrusor ICC and their adjacent SMC were synchronous under neural control. VSM and PICC Ca2+-activity was regulated by bladder nerves. These novel findings demonstrate functional neural control of bladder ICC. Similar studies should now be carried out on neurogenic bladder to elucidate the contribution of impaired nerve-ICC communication to bladder pathophysiology.
Resumo:
Data obtained with any research tool must be reproducible, a concept referred to as reliability. Three techniques are often used to evaluate reliability of tools using continuous data in aging research: intraclass correlation coefficients (ICC), Pearson correlations, and paired t tests. These are often construed as equivalent when applied to reliability. This is not correct, and may lead researchers to select instruments based on statistics that may not reflect actual reliability. The purpose of this paper is to compare the reliability estimates produced by these three techniques and determine the preferable technique. A hypothetical dataset was produced to evaluate the reliability estimates obtained with ICC, Pearson correlations, and paired t tests in three different situations. For each situation two sets of 20 observations were created to simulate an intrarater or inter-rater paradigm, based on 20 participants with two observations per participant. Situations were designed to demonstrate good agreement, systematic bias, or substantial random measurement error. In the situation demonstrating good agreement, all three techniques supported the conclusion that the data were reliable. In the situation demonstrating systematic bias, the ICC and t test suggested the data were not reliable, whereas the Pearson correlation suggested high reliability despite the systematic discrepancy. In the situation representing substantial random measurement error where low reliability was expected, the ICC and Pearson coefficient accurately illustrated this. The t test suggested the data were reliable. The ICC is the preferred technique to measure reliability. Although there are some limitations associated with the use of this technique, they can be overcome.
Resumo:
Objective: To compare the reproducibility of optic disk measurements provided by an image analyzer and a scanning laser tomograph. Methods: Ten images of the same eye of 10 normal volunteers were taken with the Heidelberg Retina Tomograph and with the Topcon ImageNet. Intraclass correlation coefficient (ICC) and coefficient of variation (CV) were used to evaluate the reproducibility of the measurements. Results: Eleven parameters were analyzed with the Topcon ImageNet. Six parameters (55%) had ICC greater than 90%. Four parameters (36%) had CV less than 10%. Twelve parameters were evaluated with the Heidelberg Retina Tomograph. Nine parameters (75%) had ICC over 90%. Nine parameters (75%) had CV less than 10%. Conclusion: Both systems provided reproducible data. The optic disk parameters provided by the Heidelberg Retina Tomograph had a better reproducibility than those obtained from the Topcon ImageNet.
Resumo:
In multiuser diversity systems, the impact of large-scale fading on the total system performance such as link quality and system power has not been widely addressed. Considering large-scale fading, we propose an adaptive multiuser scheduling to minimize the total system power while reducing the effect of large-scale fading on the system bit error rate. The number of active users is adapted to every shadow variation, which varies slower than small-scale fading. We consider the two widely used multiuser systems (i.e., delay-tolerant, and delay-sensitive multiuser systems). Closed-form expressions for the bit error rate are derived. The selection procedure for the minimum number of users is introduced for guaranteed performance of the above multiuser systems. The impact of adaptive multiuser diversity gain on the system power and bit error rate is illustrated over large-scale fading channels by numerical results.
Resumo:
We propose transmit antenna selection with receive generalized selection combining (TAS/GSC) in dual-hop cognitive decode-and-forward (DF) relay networks for reliability enhancement and interference relaxation. In this paradigm, a single antenna which maximizes the receive signal-to-noise ratio (SNR) is selected at the secondary transmitter and a subset of receive antennas with the highest SNRs are combined at the secondary receiver. To demonstrate the impact of multiple primary users on the cognitive relay network, we derive new closed-form expressions for the exact and asymptotic outage probability with TAS/GSC in the secondary network. Several important design insights are reached. We corroborate that the full diversity gain is achieved, which is entirely determined by the total number of antennas in the secondary network. The negative impact of the primary network on the secondary network is reflected in the SNR gain.
Resumo:
In this paper, we investigate a multiuser cognitive relay network with direct source-destination links and multiple primary destinations. In this network, multiple secondary users compete to communicate with a secondary destination assisted by an amplify-and-forward (AF) relay. We take into account the availability of direct links from the secondary users to the primary and secondary destinations. For the considered system, we select one best secondary user to maximize the received signal-to-noise ratio (SNR) at the secondary destination. We first derive an accurate lower bound of the outage probability, and then provide an asymptotic expression of outage probability in high SNR region. From the lower bound and the asymptotic expressions, we obtain several insights into the system design. Numerical and simulation results are finally demonstrated to verify the proposed studies.
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.
Resumo:
We examine the impact of transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decode-and-forward (DF) relaying in Nakagami-m fading channels. We select a single transmit antenna at the secondary transmitter which maximizes the receive signal-to-noise ratio (SNR) and combine a subset of receive antennas with the largest SNRs at the secondary receiver. In an effort to assess the performance, we first derive the probability density function and cumulative distribution function of the end-to-end SNR using the moment generating function. We then derive new exact closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expression for the high SNR approximation of the ergodic capacity, we gather deep insights into the high SNR slope and the power offset. Our results show that the high SNR slope is 1/2 under the proportional interference power constraint. Under the fixed interference power constraint, the high SNR slope is zero.
Resumo:
Many prosecutors and commentators have praised the victim provisions at the International Criminal Court (ICC) as 'justice for victims', which for the first time include participation, protection and reparations. This book critically examines the role of victims in international criminal justice, drawing from human rights, victimology, and best practices in transitional justice.
Drawing on field research in Northern Uganda, Luke Moffet explores the nature of international crimes and assesses the role of victims in the proceedings of the ICC, paying particular attention to their recognition, participation, reparations and protection. The book argues that because of the criminal nature and structural limitations of the ICC, justice for victims is symbolic, requiring State Parties to complement the work of the Court to address victims' needs.
In advancing an innovative theory of justice for victims, and in offering solutions to current challenges, the book will be of great interest and use to academics, practitioners and students engaged in victimology, the ICC, transitional justice, or reparations.
Resumo:
The overall aim of this study was to assess the accuracy, reproducibility and stability of a high resolution passive stereophotogrammetry system to image a female mannequin torso, to validate measurements made on the textured virtual surface compared with those obtained using manual techniques and to develop an approach to make objective measurements of the female breast. 3D surface imaging was carried out on a textured female torso and measurements made in accordance with the system of mammometrics. Linear errors in measurements were less than 0.5 mm, system calibration produced errors of less than 1.0 mm over 94% over the surface and intra-rater reliability measured by ICC = 0.999. The mean difference between manual and digital curved surface distances was 1.36 mm with maximum and minimum differences of 3.15 mm and 0.02 mm, respectively. The stereophotogrammetry system has been demonstrated to perform accurately and reliably with specific reference to breast assessment. (C) 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
The International Criminal Court (ICC) has been celebrated for its innovative victim provisions, which enable victims to participate in proceedings, avail of protection measures and assistance, and to claim reparations. The impetus for incorporating victim provisions within the ICC, came from victims’ dissatisfaction with the ad hoc tribunals in providing them with more meaningful and tangible justice.1 The International Criminal Tribunals for the former Yugoslavia and Rwanda (ICTY/R) only included victim protection measures, with no provisions for victims to participate in proceedings nor to claim reparations at them. Developments in domestic and international law, in particular human rights such as the 1985 UN Declaration on Justice for Victims and the UN Guidelines on Remedy and Reparations, and transitional justice mechanisms, such as truth commissions and reparations bodies, have helped to expand the notion of justice for international crimes to be more attuned to victims as key stakeholders in dealing with such crimes.
With the first convictions secured at the ICC and the victim participation and reparation regime taking form, it is worth evaluating the extent to which these innovative provisions have translated into justice for victims. The first part of this paper outlines what justice for victims of international crimes entails, drawing from victimology and human rights. The second section surveys the extent to which the ICC has incorporated justice for victims, in procedural and substantive terms, before concluding in looking beyond the Court to how state parties can complement the ICC in achieving justice for victims. This paper argues that while much progress has been made to institutionalise justice for victims within the Court, there is much more progress needed to evolve and develop justice for victims within the ICC to avoid dissatisfaction of past tribunals.
Resumo:
Radio-frequency (RF) impairments in the transceiver hardware of communication systems (e.g., phase noise (PN), high power amplifier (HPA) nonlinearities, or in-phase/quadrature-phase (I/Q) imbalance) can severely degrade the performance of traditional multiple-input multiple-output (MIMO) systems. Although calibration algorithms can partially compensate these impairments, the remaining distortion still has substantial impact. Despite this, most prior works have not analyzed this type of distortion. In this paper, we investigate the impact of residual transceiver hardware impairments on the MIMO system performance. In particular, we consider a transceiver impairment model, which has been experimentally validated, and derive analytical ergodic capacity expressions for both exact and high signal-to-noise ratios (SNRs). We demonstrate that the capacity saturates in the high-SNR regime, thereby creating a finite capacity ceiling. We also present a linear approximation for the ergodic capacity in the low-SNR regime, and show that impairments have only a second-order impact on the capacity. Furthermore, we analyze the effect of transceiver impairments on large-scale MIMO systems; interestingly, we prove that if one increases the number of antennas at one side only, the capacity behaves similar to the finite-dimensional case. On the contrary, if the number of antennas on both sides increases with a fixed ratio, the capacity ceiling vanishes; thus, impairments cause only a bounded offset in the capacity compared to the ideal transceiver hardware case.
Resumo:
Multi-bit trie is a popular approach performing the longest prefix matching for packet classification. However, it requires a long lookup time and inefficiently consumes memory space. This paper presents an in-depth study of different variations of multi-bit trie for IP address lookup. Our main aim is to study a method of data structure which reduces memory space. The proposed approach has been implemented using the label method in two approaches. Both methods present better results regarding lookup speed, update time and memory bit consumptions.
Energy-Aware Rate and Description Allocation Optimized Video Streaming for Mobile D2D Communications
Resumo:
The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.