35 resultados para Hydrologic sciences|Civil engineering|Water Resource Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the methodological choices of researchers studying the HR practices–outcome relationship via a content analysis of 281 studies published across the last twenty years. The prevalence and trajectory of change over time are reported for a wide range of methodological choices relevant to internal, external, construct, and statistical conclusion validity. While the results indicate a high incidence of potentially problematic cross-sectional, single informant, and single level designs, they also reveal significant improvements over time across many validity relevant methodological choices. This broad based improvement in the methodological underpinnings of HR research suggests that researchers and practitioners can view the findings reported in the HR literature with increasing confidence. Directions for future research are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An appreciation of the quantity of streamflow derived from the main hydrological pathways involved in transporting diffuse contaminants is critical when addressing a wide range of water resource management issues. In order to assess hydrological pathway contributions to streams, it is necessary to provide feasible upper and lower bounds for flows in each pathway. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways and subsequently the quicker overland and interflow pathways. This paper investigates the effectiveness of a multi-faceted approach applying different hydrograph separation techniques, supplemented by lumped hydrological modelling, for calculating the Baseflow Index (BFI), for the development of an integrated approach to hydrograph separation. A semi-distributed, lumped and deterministic rainfall runoff model known as NAM has been applied to ten catchments (ranging from 5 to 699 km2). While this modelling approach is useful as a validation method, NAM itself is also an important tool for investigation. These separation techniques provide a large variation in BFI, a difference of 0.741 predicted for BFI in a catchment with the less reliable fixed and sliding interval methods and local minima turning point methods included. This variation is reduced to 0.167 with these methods omitted. The Boughton and Eckhardt algorithms, while quite subjective in their use, provide quick and easily implemented approaches for obtaining physically realistic hydrograph separations. It is observed that while the different separation techniques give varying BFI values for each of the catchments, a recharge coefficient approach developed in Ireland, when applied in conjunction with the Master recession Curve Tabulation method, predict estimates in agreement with those obtained using the NAM model, and these estimates are also consistent with the study catchments’ geology. These two separation methods, in conjunction with the NAM model, were selected to form an integrated approach to assessing BFI in catchments.