66 resultados para Human detection
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
Because of its superior time resolution, ultra-wide bandwidth (UWB) transmission can be a highly accurate technique for ranging in indoor localization systems. Nevertheless, the presence of obstructions may deteriorate the ranging performance of the system. Indoor environments are often densely populated with people. However, t h e effect of the human body presence has been scarcely investigated so far within the UWB ranging context. In this work, we investigate this effect by conducting UWB measurements and analyzing the ranging performance of the system. Two measurement campaigns were performed in the 3-5.5 GHz band, in an anechoic chamber and a laboratory environment. The range estimates were obtained by employing the threshold-based first peak detection technique. Analysis results revealed that the human body significantly attenuates the direct-path signal component. On the other hand, in this study it does not introduce a significant range error since the length difference between the diffracted paths around the body and the direct-path is less than the spatial resolution of the measurement setup. © 2012 IEEE.
Resumo:
The IDS (Intrusion Detection System) is a common means of protecting networked systems from attack or malicious misuse. The development and rollout of an IDS can take many different forms in terms of equipment, protocols, connectivity, cost and automation. This is particularly true of WIDS (Wireless Intrusion Detection Systems) which have many more opportunities and challenges associated with data transmission through an open, shared medium.
The operation of a WIDS is a multistep process from origination of an attack through to human readable evaluation. Attention to the performance of each of the processes in the chain from attack detection to evaluation is imperative if an optimum solution is to be sought. At present, research focuses very much on each discrete aspect of a WIDS with little consideration to the operation of the whole system. Taking a holistic view of the technology shows the interconnectivity and inter-dependence between stages, leading to improvements and novel research areas for investigation.
This chapter will outline the general structure of Wireless Intrusion Detection Systems and briefly describe the functions of each development stage, categorised into the following 6 areas:
• Threat Identification,
• Architecture,
• Data Collection,
• Intrusion Detection,
• Alert Correlation,
• Evaluation.
These topics will be considered in broad terms designed for those new to the area. Focus will be placed on ensuring the readers are aware of the impact of choices made at early stages in WIDS development on future stages.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
A biochip based on surface plasmon resonance was fabricated to detect prostate specific antigen-a1-antichymotrypsin (PSA-ACT complex) in both HBS buffer and human serum. To reduce non-specific binding and steric hindrance effect, the chemical surface of the sensor chips was constructed by using various oligo(ethylene glycol) mixtures of different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH. The self-assembled monolayers were biotinylated to facilitate the immobilization of streptavidin. Using the chip surfaces, PSA-ACT complex in HBS buffer and human serum was detected at 20.7 and 47.5 ng/ml by primary immunoresponse, respectively. However, the limit of detection could be simply enhanced by a sandwich strategy to improve the sensitivity and specificity of the immunoassay. An intact PSA polyclonal antibody was used as an amplifying agent in the strategy. As a result, PSA-ACT complex concentrations as low as 10.2 and 18.1 ng/ml were found in the HBS buffer and human serum sample, respectively. The result indicates that this approach could satisfy our goal without modifying the secondary interactant.
Resumo:
In this paper, we report a coupling of fluorophore-DNA barcode and bead-based
immunoassay for the detection of Avian Influenza Virus (AIV), a potential pandemic threat for human health and enormous economic losses. The detection strategy is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representatively fluorescent barcodes. Despite its simplicity the assay has sensitivity comparable to RT-PCR amplification, and possesses a great potential as a rapid and sensitive on-chip detection format.
Resumo:
The presence of paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP) toxins in seafood is a severe and growing threat to human health. In order to minimize the risks of human exposure, the maximum content of these toxins in seafood has been limited by legal regulations worldwide. The regulated limits are established in equivalents of the main representatives of the groups: saxitoxin (STX), okadaic acid (OA) and domoic acid (DA), for PSP, DSP and ASP, respectively. In this study a multi-detection method to screen shellfish samples for the presence of these toxins simultaneously was developed. Multiplexing was achieved using a solid-phase microsphere assay coupled to flow-fluorimetry detection, based on the Luminex xMap technology. The multi-detection method consists of three simultaneous competition immunoassays. Free toxins in solution compete with STX, OA or DA immobilized on the surface of three different classes of microspheres for binding to specific monoclonal antibodies. The IC50 obtained in buffer was similar in single- and multi-detection: 5.6 ± 1.1 ng/mL for STX, 1.1 ± 0.03 ng/mL for OA and 1.9 ± 0.1 ng/mL for DA. The sample preparation protocol was optimized for the simultaneous extraction of STX, OA and DA with a mixture of methanol and acetate buffer. The three immunoassays performed well with mussel and scallop matrixes displaying adequate dynamic ranges and recovery rates (around 90 % for STX, 80 % for OA and 100 % for DA). This microsphere-based multi-detection immunoassay provides an easy and rapid screening method capable of detecting simultaneously in the same sample three regulated groups of marine toxins.
Resumo:
Molecular diagnostic tests, based on the detection and identification of nucleic acids in human biological samples, are increasingly employed in the diagnosis of infectious diseases and may be of future benefit to CF microbiology services. Our growing understanding of the complex polymicrobial nature of CF airway infection has highlighted current and likely future shortcomings in standard diagnostic practices. Failure to detect fastidious or slow growing microbes and misidentification of newly emerging pathogens could potentially be addressed using culture-independent molecular technologies with high target specificity. This review considers existing molecular diagnostic tests in the context of the key requirements for an envisaged CF microbiology focussed assay. The issues of assay speed, throughput, detection of multiple pathogens, data interpretation and antimicrobial susceptibility testing are discussed.
Resumo:
There is substantial international variation in human papillomavirus (HPV) prevalence; this study details the first report from Northern Ireland and additionally provides a systematic review and meta-analysis pooling the prevalence of high-risk (HR-HPV) subtypes among women with normal cytology in the UK and Ireland. Between February and December 2009, routine liquid based cytology (LBC) samples were collected for HPV detection (Roche Cobas® 4800 [PCR]) among unselected women attending for cervical cytology testing. Four electronic databases, including MEDLINE, were then searched from their inception till April 2011. A random effects meta-analysis was used to calculate a pooled HR-HPV prevalence and associated 95% confidence intervals (CI). 5,712 women, mean age 39 years (±SD 11.9 years; range 20-64 years), were included in the analysis, of which 5,068 (88.7%), 417 (7.3%) and 72 (1.3%) had normal, low, and high-grade cytological findings, respectively. Crude HR-HPV prevalence was 13.2% (95% CI, 12.7-13.7) among women with normal cytology and increased with cytological grade. In meta-analysis the pooled HR-HPV prevalence among those with normal cytology was 0.12 (95% CIs, 0.10-0.14; 21 studies) with the highest prevalence in younger women. HPV 16 and HPV 18 specific estimates were 0.03 (95% CI, 0.02-0.05) and 0.01 (95% CI, 0.01-0.02), respectively. The findings of this Northern Ireland study and meta-analysis verify the prevalent nature of HPV infection among younger women. Reporting of the type-specific prevalence of HPV infection is relevant for evaluating the impact of future HPV immunization initiatives, particularly against HR-HPV types other than HPV 16 and 18. J. Med. Virol. 85:295-308, 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 µg/kg. The decision limit (CCa) was 100 µg/kg, with the detection capability (CCß) found to be =200 µg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 µg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each level, respectively. At these three respective levels, the recovery of the assay was 112, 98, and 99 %.
Resumo:
Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.
Resumo:
We present a novel device-free stationary person detection and ranging method, that is applicable to ultra-wide bandwidth (UWB) networks. The method utilizes a fixed UWB infrastructure and does not require a training database of template waveforms. Instead, the method capitalizes on the fact that a human presence induces small low-frequency variations that stand out against the background signal, which is mainly affected by wideband noise. We analyze the detection probability, and validate our findings with numerical simulations and experiments with off-the-shelf UWB transceivers in an indoor environment. © 2007-2012 IEEE.
Resumo:
To develop a detection method for human pathogenic Listeria monocytogenes, novel specific antibodies were obtained from hybridoma libraries generated by using formalin-killed and heat-killed L. monocytogenes as immunogens. Several monoclonal antibodies found to be specific to Listeria spp or L. monocytogenes were evaluated for their applicability as binders for bead array and sandwichELISA for detection of L. monocytogenes in buffer and in 11 different food types. The bead array format consistently demonstrated lower detection limits and was less affected by interference from food matrices than the sandwich ELISA format. However, the obtained detection limits were not sufficient to satisfy the required standard for L. monocytogenes testing. Therefore, the international organizationfor standardization (ISO 11290-1:1996) methods for pre-enrichment and enrichment were employed to increase the bacteria numbers. When compared to the standard plating method, the bead array was able to detect the bacteria with the same accuracy even at the 1 CFU level after only 24 hours of the enrichment period. In addition, Listeria-specific 3C3 and L. monocytogenes-specific 7G4 antibodies were successfully employed to construct a multiplex detection for Listeria, Salmonella and Campylobacter in a bead array format by combining with commercial Salmonella-specific and available Campylobacter-specific antibodies.
Resumo:
Background: Approximately 5-6% of all infective episodes in NICU are of viral origin. Previous studies suggest that human parechovirus (HPeV) infection presents most commonly in term infants, as a sepsis-like syndrome in which meningoencephalitis is prominent. Our aim was to study the infection rate and associated features of HPeV.
Methods: Blood samples were taken from NICU babies greater than 48 hours old, who were being investigated for late onset sepsis. Clinical and laboratory data were collected at the time of the suspected sepsis episode. Samples were tested using universal primers and probe directed at the 5'-untranslated region of the HPeV genome by reverse transcriptase PCR. Results were confirmed by electrophoresis and DNA sequencing.
Results: HPeV was detected in 11 of 84 samples (13%). These infants had a mean (interquartile range, IQR) gestational age of 28.9 (26.9 - 30.6) weeks and mean birth weight of 1.26 (SD = 0.72) kg. The median day of presentation was 16 (IQR: 11-27). These characteristics were similar to the infants without positive viral detection. Six infants presented with respiratory signs. One infant presented with signs of meningitis. Six of the 11 episodes of HPeV infection occurred during the winter months (December - February). No HPeV positive infants had abnormal findings on their 28-day cranial ultrasound examination.
Conclusions: We found a HPeV infection rate of 13% in infants being tested for late onset sepsis. HPeV should be considered as a possible cause of sepsis-like symptoms in preterm infants.
Resumo:
Objectives. To conduct a prospective evaluation to determine the utility of the BTA stat test in the detection of upper tract transitional cell carcinoma (UTTCC). Monitoring for UTTCC currently relies on invasive procedures such as upper tract imaging, ureteral washing cytology (UWC) and/or ureteroscopy, or voided urine cytology (VUC). The BTA stat test is a sensitive qualitative immunoassay that detects human complement factor H-related protein in voided urine.
Methods. A total of 81 patients participated, 27 with histopathologically confirmed UTTCC, 26 with upper tract calculi, and 28 with microscopic hematuria but no evidence of urologic disease. Voided specimens collected before surgery or treatment were tested with the BTA stat test and VUC. UWC was performed in specimens collected by a ureteral catheter.
Results. The BTA stat test was significantly more sensitive and specific than VUC or UWC. The overall sensitivity for each was 82%, 11%, and 48%; the specificity was 89%, 54%, and 33%. The positive predictive value for the BTA stat test was 79% and the negative predictive value was 91%, both the highest of the three tests.
Conclusions. The BTA stat test was superior to VUC and UWC in the detection of UTTCC. These results may support the adoption of a less aggressive follow-up policy when monitoring for UTTCC when the BTA stat result is negative. If cystoscopy is negative and the BTA stat test is positive, upper tract investigations should be expedited and, if the bladder is in place, bladder biopsies performed. (C) 2001, Elsevier Science Inc.