48 resultados para Holy-cross Mountains
Resumo:
This article examines recent developments in the Cyprus negotiations and suggests a number of changes to the proposed electoral system. Specifically, cross-voting and other electoral methods that encourage coalition-building across ethnic communities might add significantly to the functionality of the Annan Plan. Combined with other innovative mechanisms already in the plan, cross-voting could force political parties to seriously take into account the interests and concerns of the two Cypriot communities, an element that is currently missing from both the Turkish Cypriot (TC) and Greek Cypriot (GC) political systems. Special conditions on the island, as well as the way most political parties operated in the critical pre-April 2004 referendum period, suggest the need for this amendment. Although this study respects the consociational logic of the Annan Plan, it supplements consociationalism with elements that foster integration and inter-dependence between the two communities and their voters. The article also reviews the postreferendum developments in Cyprus which might have worrisome future implications, not only for its two communities, but also for EU enlargement in general. Cyprus both holds one of the keys to Turkey's entrance into the EU and is a litmus test for the Euro-Atlantic nexus and its capacity to pacify and integrate ethnically divided societies in Europe and elsewhere.
Resumo:
The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.
Resumo:
The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.
Resumo:
We have performed a kinematically complete experiment and calculations on single ionization in 100 MeV/amu C6+ + He collisions. For electrons ejected into the scattering plane (defined by the initial and final projectile momentum vectors) our first- and higher-order calculations are in good agreement with the data. In the plane perpendicular to the scattering plane and containing the initial projectile axis a strong forward-backward asymmetry is observed. In this plane both the first-order and the higher-order calculations do not provide good agreement neither with the data nor amongst each other.
Resumo:
The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.
Resumo:
Cross sections differential with respect to energy and angle of ejected positrons and electrons for Ps(ls) fragmentation in collision with He, Ne, Ar, Kr and Xe targets are reported. For Ne, Ar, Kr and Xe, only the case where the target is not excited (target elastic collisions) is considered. For He, fragmentation with target excitation/ionization (target inelastic collisions) is also studied. The impulse approximation has been used for target elastic fragmentation, the first Born approximation for target inelastic processes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.
Resumo:
The realization of nonclassical states is an important task for many applications of quantum information processing. Usually, properly tailored interactions, different from goal to goal, are considered in order to accomplish specific tasks within the general framework of quantum state engineering. In this paper, we remark on the flexibility of a cross-Kerr nonlinear coupling in hybrid systems as an important ingredient in the engineering of nonclassical states. The general scenario we consider is the implementation of high cross-Kerr nonlinearity in cavity-quantum electrodynamics. In this context, we discuss the possibility of performing entanglement transfer and swapping between matter qubits and light fields initially prepared in separable coherent states. The recently introduced concept of entanglement reciprocation is also considered and shown to be possible with our scheme. We reinterpret some of our results in terms of applications of a generalized Ising interaction to systems of different nature.
Resumo:
Recent experimental data for fully differential cross sections have been compared to various continuum-distorted-wave eikonal-initial-state models without much success, despite good agreement with double-differential cross sections. A four-body model is formulated here and results are presented both when the internuclear potential is omitted and when it is included. They are compared with recent experimental data for fully differential cross sections for 3.6 MeV/u Au-P(Z)++He collisions, Z(P)=24,53.
Resumo:
Simple electron capture processes are studied using an orthonormal two state continuum-distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing predictions for total and differential cross sections with available experimental data. Overall good agreement is obtained and the authors conclude that a relatively small CDW basis set may be suitable to model a wide variety of low-energy collisions if the members of this extended set are astutely chosen.
Resumo:
A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published. codes for single ionization of. target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Title of program: ARGON Catalogue identifier: ADSE Program summary URL: http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the code been vectorized or parallelized? Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 32 189 Distribution format: tar gzip file Keywords: Single ionization, cross sections, continuum-distorted-wave model, continuum- distorted-wave eikonal-initial-state model, target atoms, wave treatment Nature of physical problem: The code calculates total, and differential cross sections for the single ionization of target atoms ranging from hydrogen up to and including argon by both light and heavy ion impact. Method of solution: ARGON allows the user to calculate the cross sections using either the CDW or CDW-EIS [J. Phys. B 16 (1983) 3229] models within the wave treatment. Restrictions on the complexity of the program: Both the CDW and CDW-EIS models are two-state perturbative approximations. Typical running time: Times vary according to input data and number of processors. For one processor the test input data for double differential cross sections (40 points) took less than one second, whereas the test input for total cross sections (20 points) took 32 minutes. Unusual features of the program: none (C) 2003 Elsevier B.V All rights reserved.