52 resultados para High resolution
Resumo:
A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.
Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.
Resumo:
The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.
Resumo:
A salt weathering simulation using a mix of sodium chloride (5%) and magnesium sulphate (5%) in a salt corrosion cabinet and five granular limestones is described. Progressive surface loss from vertical exposed faces was mapped using a high resolution (sub-millimetre) object scanner (Konica Minolta Vi9i). Patterns of loss are related to surface porosity/permeability measurements obtained using a hand-held gas permeameter. Introduction of this spatial dimension into damage assessment is seen as essential for understanding the initial conditions that allow surface loss to be triggered, and changes in surface characteristics as weathering proceeds which dictate subsequent decay in space and time. Preliminary observations suggest that scanning at this high resolution is particularly valuable in quantifying very subtle trends and distortions that are pre-cursors to material loss, including surface swelling and pore filling.
Resumo:
Ten medieval permanent teeth were subjected to incremental dentine sectioning and stable isotope analysis to investigate dietary changes in high resolution. In addition to this, eight increments were also selected for 14C measurements to examine possible intra-individual age differences. Results reveal the cessation of weaning, various dietary profiles and in some cases significantly different 14C ages obtained from a single tooth. This case study illustrates how 14C measurements can function as a proxy alongside the commonly used carbon and nitrogen stable isotope values to interpret the diet of past individuals
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
A novel type of microwave probes based on the loaded aperture geometry has been proposed and experimentally evaluated for dielectrics characterisation and high-resolution near-field imaging. Experimental results demonstrate the possibility of very accurate microwave spectroscopic characterisation of thin lossy dielectric samples and biological materials containing water. High-resolution images of the subwavelength lossy dielectric strips and wet and dry leaves have been obtained with amplitude contrast around 10-20 dB and spatial resolution better than one-tenth of a wavelength in the near-field zone. A microwave imaging scenario for the early-stage skin cancer identification based on the artificial dielectric model has also been explored. This model study shows that the typical resolution of an artificial malignant tumour with a characteristic size of one-tenth of a wavelength can be discriminated with at least 6 dB amplitude and 50° phase contrast from the artificial healthy skin and with more than 3 dB contrast from a benign lesion of the same size. It has also been demonstrated that the proposed device can efficiently deliver microwave energy to very small, subwavelength, focal areas which is highly sought in the microwave hyperthermia applications.
Resumo:
A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.
Resumo:
Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.
Resumo:
Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter ≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.
Resumo:
This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.
Resumo:
High-resolution photoionization measurements of Xe + ions have been performed at the Advanced Light Source in Berkeley, California, USA. The experimental cross sections are compared with results from Dirac-Coulomb R-matrix calculations.