34 resultados para HEAVY-METAL BIOSORPTION
Resumo:
This paper reviews some practical aspects of the application of algal biomass for the biosorption of heavy metals from wastewater. The ability of different algal species to remove metals varies with algal group and morphology, with the speciation of specific metals and their competition with others in wastewater, and with environmental or process factors. The scattered literature on the uptake of heavy metals by both living and dead algal biomass - both macroalgae and immobilized microalgae - has been reviewed, and the uptake capacity and efficiency of different species, as well as what is known about the mechanisms of biosorption, are presented. Data on metal uptake have commonly been fitted to equilibrium models, such as the Langmuir and Freundlich isotherm models, and the parameters of these models permit the uptake capacity of different algal species under different process conditions to be compared. Higher uptake capacities have been found for brown algae than for red and green algae. Kelps and fucoids are the most important groups of algae used for biosorption of heavy metals, probably because of their abundant cell wall polysacchrides and extracellular polymers. Another important practical aspect is the possibility of re-using algal biomass in several adsorption/desorption cycles (up to 10 have been used with Sargassum spp), and the influence of morphology and environmental conditions on the re-usability of algal tissue is also considered.
Resumo:
Surface reaction methodology was implicated in the optimization of hexavalent chromium removal onto lignin with respect to the process parameters. The influence of altering the conditions for removal of chromium(VI), for instance; solution pH, ionic strength, initial concentration, the dose of biosorbent, presence of other metals (Zn and Cu), presence of salts and biosorption-desorption studies, were investigated. It was found that the biosorption capacity of lignin depends on solution pH, with a maximum biosorption capacity for chromium at pH 2. Experimental equilibrium data were fitted to five different isotherm models by non-linear regression method, however, the biosorption equilibrium data were well interpreted by the Freundlich isotherm. The maximum biosorption capacities (q(max)) obtained using Dubinin-Radushkevich and Khan isotherms for Cr(VI) biosorption are 31.6 and 29.1 mg/g. respectively. Biosorption showed pseudo second order rate kinetics at different initial concentrations of Cr(VI). The intraparticle diffusion study indicated that film diffusion may be involved in the current study. The percentage removal of chromium on lignin decreased significantly in the presence of NaHCO3 and K2P2O7 salts. Desorption data revealed that nearly 70% of the Cr(VI) adsorbed on lignin could be desorbed using 0.1 M NaOH. It was evident that the biosorption mechanism involves the attraction of both hexavalent chromium (anionic) and trivalent chromium (cationic) onto the surface of lignin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This article presents a low-cost portable electrochemical instrument capable of on-site identification of heavy metals. The instrument acquires metal-specific voltage and current signals by the application of differential pulse anodic stripping voltammetry. This technique enhances the analytical current and rejects the background current, resulting in a higher signal-to-noise ratio for a better detection limit. The identification of heavy metals is based on an intelligent machine-based method using a multilayer perceptron neural network consisting of three layers of neurons. The neural network is implemented using a 16 bit microcontroller. The system is developed for use in the field in order to avoid expensive and time-consuming procedures and can be used in a variety of situations to help environmental assessment and control.
Resumo:
In this work, olive stone (OS) was utilized to investigate its capacity as biosorbent for methylene blue (MB) and Cr(III), which are usually present in textile industry effluents. Equilibrium and kinetic experiments were performed in batch experiments. The biosorption process followed pseudo-second-order kinetics. The equilibrium data were fitted with several models, but Langmuir and Sips models best reproduced the experimental results. Maximum biosorption capacities were 3.296 mg/g (0.0116 mmol/g) and 4.990 mg/g (0.0960 mmol/g) for MB and Cr(III), respectively. Several operation variables, such as
biosorbent mass, flow rate, and initial concentration on the removal of dye and metal, were evaluated in column system. The removal efficiency improved as OS mass increased and decreased when flow rate and initial concentration increased. Also, MB uptake was substantially decreased by increasing the initial concentration of Cr(III), ranging from 6.09 to 2.75 mg/g. These results show that the presence of Cr(III) significantly modifies the biosorption capacity of MB by the OS. These results suggest that OS is a potential low-cost food industry waste for textile industry wastewater treatment.