230 resultados para H4IIE rat hepatoma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatostatin-14 elicits negative inotropic and chronotropic actions in atrial myocardium. Less is known about the effects of somatostatin-14 in ventricular myocardium. The direct contractile effects of somatostatin-14 were assessed using ventricular cardiomyocytes isolated from the hearts of adult rats. Cells were stimulated at 0.5 Hz with CaCl2 (2 mM) under basal conditions and in the presence of the -adrenoceptor agonist, isoprenaline (1 nM), or the selective inhibitor of the transient outward current (Ito), 4-aminopyridine (500 M). Somatostatin-14 did not alter basal contractile response but it did inhibit (IC50 13 nM) the response to isoprenaline (1 nM). In the presence of 4-aminopyridine (500 M), somatostatin-14 stimulated a positive contractile response (EC50 118 fM) that was attenuated markedly by diltiazem (100 nM). These data indicate that somatostatin-14 exerts dual effects directly in rat ventricular cardiomyocytes: (1) a negative contractile effect, observed in the presence of isoprenaline (1 nM), coupled to activation of Ito; and (2) a previously unreported and very potent positive contractile effect, unmasked by 4-aminopyridine (500 M), coupled to the influx of calcium ions via L-type calcium channels. The greater potency of somatostatin-14 for producing the positive contractile effect indicates that the peptide may exert a predominantly stimulatory influence on the resting contractility of ventricular myocardium in vivo, whereas the negative contractile effect, observed at much higher concentrations, could indicate that localized elevations in the concentration of the peptide may serve as a negative regulatory influence to limit the detrimental effects of excessive stimulation of cardiomyocyte contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The spontaneously hypertensive rat (SHR) is frequently used as model of cardiovascular disease, with considerable disparity in reported parameters of hypertrophy. The aim of this study was to assess the temporal changes occurring during the development and progression of cardiomyocyte hypertrophy in SHR, subsequent to pressure overload, compared to changes associated with normal aging using the normotensive Wistar–Kyoto (WKY) rat. Methods Ventricular cardiomyocytes were isolated from rats at 8, 12, 16, 20 and 24 weeks, and parameters of hypertrophy (cell dimensions, protein mass, de novo protein synthesis, and gene expression) and function (contraction and hypertrophic responsiveness in vitro) were assessed. Results Hypertension was evident at =7 weeks in SHRs. Heart:body mass ratio, cardiomyocyte protein mass and width were elevated (P