38 resultados para Growth mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using phase diagrams derived from Flory–Huggins theory, we defined the thermodynamic state of amorphous felodipine within three different polymeric carriers. Variation in the solubility and miscibility of felodipine within different polymeric materials (using F–H theory) has been identified and used to select the most suitable polymeric carriers for the production of amorphous drug–polymer solid dispersions. With this information, amorphous felodipine solid dispersions were manufactured using three different polymeric materials (HPMCAS-HF, Soluplus, and PVPK15) at predefined drug loadings, and the crystal growth rates of felodipine from these solid dispersions were investigated. Crystallization of amorphous felodipine was studied using Raman spectral imaging and polarized light microscopy. Using this data, we examined the correlation among several characteristics of solid dispersions to the crystal growth rate of felodipine. An exponential relationship was found to exist between drug loading and crystal growth rate. Moreover, crystal growth within all selected amorphous drug–polymer solid dispersion systems were viscosity dependent (η–ξ). The exponent, ξ, was estimated to be 1.36 at a temperature of 80 °C. Values of ξ exceeding 1 may indicate strong viscosity dependent crystal growth in the amorphous drug–polymer solid dispersion systems. We argue that the elevated exponent value (ξ > 1) is a result of drug–polymer mixing which leads to a less fragile amorphous drug–polymer solid dispersion system. All systems investigated displayed an upper critical solution temperature, and the solid–liquid boundary was always higher than the spinodal decomposition curve. Furthermore, for PVP–FD amorphous dispersions at drug loadings exceeding 0.6 volume ratio, the mechanism of phase separation within the metastable zone was found to be driven by nucleation and growth rather than liquid–liquid separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant activation of Wnt/β-catenin signaling, resulting in the expression of Wnt-regulated oncogenes, is recognized as a critical factor in the etiology of colorectal cancer. Occupancy of β-catenin at promoters of Wnt target genes drives transcription, but the mechanism of β-catenin action remains poorly understood. Here, we show that CARM1 (coactivator-associated arginine methyltransferase 1) interacts with β-catenin and positively modulates β-catenin-mediated gene expression. In colorectal cancer cells with constitutively high Wnt/β-catenin activity, depletion of CARM1 inhibits expression of endogenous Wnt/β-catenin target genes and suppresses clonal survival and anchorage-independent growth. We also identified a colorectal cancer cell line (RKO) with a low basal level of β-catenin, which is dramatically elevated by treatment with Wnt3a. Wnt3a also increased the expression of a subset of endogenous Wnt target genes, and CARM1 was required for the Wnt-induced expression of these target genes and the accompanying dimethylation of arginine 17 of histone H3. Depletion of β-catenin from RKO cells diminished the Wnt-induced occupancy of CARM1 on a Wnt target gene, indicating that CARM1 is recruited to Wnt target genes through its interaction with β-catenin and contributes to transcriptional activation by mediating events (including histone H3 methylation) that are downstream from the actions of β-catenin. Therefore, CARM1 is an important positive modulator of Wnt/β-catenin transcription and neoplastic transformation, and may thereby represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/β-catenin signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interplay between methylation and demethylation of histone lysine residues is an essential component of gene expression regulation and there is considerable interest in elucidating the roles of proteins involved. Here we report that histone demethylase KDM4A/JMJD2A, which is involved in the regulation of cell proliferation and is overexpressed in some cancers, interacts with RNA Polymerase I, associates with active ribosomal RNA genes and is required for serum-induced activation of rDNA transcription. We propose that KDM4A controls the initial stages of transition from 'poised', non-transcribed rDNA chromatin into its active form. We show that PI3K, a major signalling transducer central for cell proliferation and survival, controls cellular localization of KDM4A and consequently its association with ribosomal DNA through the SGK1 downstream kinase. We propose that the interplay between PI3K/SGK1 signalling cascade and KDM4A constitutes a mechanism by which cells adapt ribosome biogenesis level to the availability of growth factors and nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sensory neurones from the trigeminal nerve innervate the oro-facial region and teeth. Transient receptor potential channels (TRPs) expressed by these neurones are responsible for relaying sensory information such as changes in ambient temperature, mechanical sensations and pain. Study of TRP channel expression and regulation in human sensory neurones therefore merits investigation to improve our understanding of allodynia and hyperalgesia. Objective: The objective of this study was to differentiate human dental pulp stem cells (hDPSCs) towards a neuronal phenotype (peripheral neuronal equivalents; PNEs) and employ this model to study TRP channel sensitisation. Method: hDPSCs were enriched by preferential adhesion to fibronectin, plated on coverslips (thickness 0) coated with poly-l-ornithine and laminin and then differentiated for 7 days in neurobasal A medium with additional supplementation. A whole cell patch clamp technique was used to investigate whether TRP channels on PNE membranes were modulated in the presence of nerve growth factor (NGF). PNEs were treated with NGF for 20 minutes immediately before experimentation and then stimulated for TRPA1 activity using cinnamaldehyde. Peak currents were read at 80 mV and -80 mV and compared to peak currents recorded in untreated PNEs. Data were analysed and plotted using Clampfit9 software (Molecular Devices, Sunnyvale, California, USA). Result: Results showed for the first time that pre-treatment of PNEs by NGF produced significantly larger inward and outward currents demonstrating that TRPA1 channels on PNE membranes were capable of becoming sensitised following treatment with NGF. Conclusion: Sensitisation of TRPA1 by NGF provides evidence of a mechanism for rapid neuronal sensitisation that is independent of TRPA1 gene expression

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several different acquired resistance mechanisms of EGFR mutant lung adenocarcinoma to EGFR-tyrosine kinase inhibitor (TKI) therapy have been described, most recently transformation to small cell lung carcinoma (SCLC). We describe the case of a 46-year-old female with relapsed EGFR exon 19 deletion lung adenocarcinoma treated with erlotinib, and on resistance, cisplatin-pemetrexed. Liver rebiopsy identified an afatinib-resistant combined SCLC and non-small cell carcinoma with neuroendocrine morphology, retaining the EGFR exon 19 deletion. This case highlights acquired EGFR-TKI resistance through transformation to the high-grade neuroendocrine carcinoma spectrum and that that such transformation may not be evident at time of progression on TKI therapy.