149 resultados para Groundwater Nitrate isotopes Nitrification Denitrification
Resumo:
Nitrogen metabolism was examined in the intertidal seaweeds Fucus vesiculosus, Fucus serratus, Fucus spiralis and Laminaria digitata in a temperate Irish sea lough. Internal NO3- storage, total N content and nitrate reductase activity (NRA) were most affected by ambient NO3-, with highest values in winter, when ambient NO3- was maximum, and declined with NO3- during summer. In all species, NRA was six times higher in winter than in summer, and was markedly higher in Fucus species (e.g. 256 ± 33 nmol NO3- min1 g1 in F. vesiculosus versus 55 ± 17 nmol NO3- min1 g1 in L. digitata). Temperature and light were less important factors for N metabolism, but influenced in situ photosynthesis and respiration rates. NO3- assimilating capacity (calculated from NRA) exceeded N demand (calculated from net photosynthesis rates and C : N ratios) by a factor of 0.7–50.0, yet seaweeds stored significant NO3- (up to 40–86 µmol g1). C : N ratio also increased with height in the intertidal zone (lowest in L. digitata and highest in F. spiralis), indicating that tidal emersion also significantly constrained N metabolism. These results suggest that, in contrast to the tight relationship between N and C metabolism in many microalgae, N and C metabolism could be uncoupled in marine macroalgae, which might be an important adaptation to the intertidal environment.
Performance of a Sequential Reactive Barrier for Bioremediation of Coal Tar Contaminated Groundwater
Resumo:
Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).