38 resultados para Golpe de drive
Resumo:
Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.
Resumo:
An experimental investigation is carried out to verify the feasibility of using an instrumented vehicle to detect and monitor bridge dynamic parameters. The low-cost method consists of the use of a moving vehicle fitted with accelerometers on its axles. In the laboratory experiment, the vehicle–bridge interaction model consists of a scaled two-axle vehicle model crossing a simply supported steel beam. The bridge model also includes a scaled road surface profile. The effects of varying the vehicle model configuration and speed are investigated. A finite element beam model is calibrated using the experimental results, and a novel algorithm for the identification of global bridge stiffness is validated. Using measured vehicle accelerations as input to the algorithm, the beam stiffness is identified with a reasonable degree of accuracy.
Resumo:
This study presents a vibration-based health monitoring of short span bridges by
an inspection vehicle. How to screen health condition of short span bridges in terms of the
drive-by bridge inspection is described. Feasibility of the drive-by bridge inspection is
investigated through a scaled laboratory moving vehicle experiment. The feasibility of using an
instrumented vehicle to detect the natural frequency and changes in structural damping of a
model bridge is observed. Observations also demonstrate possibility of diagnosis of bridges by
comparing patterns of identified dynamic parameters of bridges through a periodical
monitoring. It is confirmed that the method for damage identification under a moving vehicle
identifies the damage location and severity well.
Resumo:
Many of the bridges currently in use worldwide are approaching the end of their design lives. However, rehabilitating and extending the lives of these structures raises important safety issues. There is also a need for increased monitoring which has considerable cost implications for bridge management systems. Existing structural health monitoring (SHM) techniques include vibration-based approaches which typically involve direct instrumentation of the bridge and are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive. In the past decade, alternative indirect vibration-based approaches which utilise the response of a vehicle passing over a bridge have been developed. This paper investigates such an approach; a low-cost approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. The approach aims to detect damage in the bridge while obviating the need for direct instrumentation of the bridge. Here, the effectiveness of the approach in detecting damage in a bridge is investigated using a simplified vehicle-bridge interaction (VBI) model in theoretical simulations and a scaled VBI model in a laboratory experiment. In order to identify the existence and location of damage, the vehicle accelerations are recorded and processed using a continuous Morlet wavelet transform and a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level and road surface roughness on the accuracy of results.
Resumo:
This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations.
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In particular, there is a need for increased bridge monitoring in order to provide adequate maintenance, prioritise allocation of funds and guarantee acceptable levels of transport safety. Existing bridge structural health monitoring (SHM) techniques typically involve direct instrumentation of the bridge with sensors and equipment for the measurement of properties such as frequencies of vibration. These techniques are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive due to the requirement for on-site installations. In recent years, alternative low-cost indirect vibrationbased SHM approaches have been proposed which utilise the dynamic response of a vehicle to carry out “drive-by” pavement and/or bridge monitoring. The vehicle is fitted with sensors on its axles thus reducing the need for on-site installations. This paper investigates the use of low-cost sensors incorporating global navigation satellite systems (GNSS) for implementation of the drive-by system in practice, via field trials with an instrumented vehicle. The potential of smartphone technology to be harnessed for drive by monitoring is established, while smartphone GNSS tracking applications are found to compare favourably in terms of accuracy, cost and ease of use to professional GNSS devices.
Resumo:
A potentially powerful drive-by bridge inspection approach was proposed to inspect bridge conditions utilizing the vibrations of a test vehicle while it passes over the target bridge. This approach suffers from the effect of roadway surface roughness and two solutions were proposed in previous studies: one is to subtract the responses of two vehicles (time-domain method) before spectral analysis and the other one is to subtract the spectrum of one vehicle from that of the other (frequency-domain method). Although the two methods were verified theoretically and numerically, their practical effectiveness is still an open question.Furthermore, whether the outcome spectra processed by those methods could be used to detect potential bridge damage is of our interests. In this study, a laboratory experiment was carried out with a test tractor-trailer system and a scaled bridge. It was observed that, first, for practical applications, it would be preferable to apply the frequency-domain method, avoiding the need to meet a strict requirement in synchronizing the responses of the two trailers in time domain; second, the statistical pattern of the processed spectra in a specific frequency band could be an effective anomaly indicator incorporated in drive-by inspection methods.