58 resultados para Geophysical instruments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data obtained with any research tool must be reproducible, a concept referred to as reliability. Three techniques are often used to evaluate reliability of tools using continuous data in aging research: intraclass correlation coefficients (ICC), Pearson correlations, and paired t tests. These are often construed as equivalent when applied to reliability. This is not correct, and may lead researchers to select instruments based on statistics that may not reflect actual reliability. The purpose of this paper is to compare the reliability estimates produced by these three techniques and determine the preferable technique. A hypothetical dataset was produced to evaluate the reliability estimates obtained with ICC, Pearson correlations, and paired t tests in three different situations. For each situation two sets of 20 observations were created to simulate an intrarater or inter-rater paradigm, based on 20 participants with two observations per participant. Situations were designed to demonstrate good agreement, systematic bias, or substantial random measurement error. In the situation demonstrating good agreement, all three techniques supported the conclusion that the data were reliable. In the situation demonstrating systematic bias, the ICC and t test suggested the data were not reliable, whereas the Pearson correlation suggested high reliability despite the systematic discrepancy. In the situation representing substantial random measurement error where low reliability was expected, the ICC and Pearson coefficient accurately illustrated this. The t test suggested the data were reliable. The ICC is the preferred technique to measure reliability. Although there are some limitations associated with the use of this technique, they can be overcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers and clinicians have experienced substantial difficulties locating measures that are suitable for use within palliative care settings. This article details the psychometric properties of nine instruments designed to assess the following psychosocial characteristics of family caregivers: competence, mastery, self-efficacy, burden, optimism, preparedness, social support, rewards, and mutuality. Results are based on the responses of 106 primary family caregivers caring for relatives dying of cancer. Principal components extraction with varimax rotation was used to explore the underlying structure of each measure. Following the exclusion of complex variables, suggested components for most measures comprised relatively homogenous items, which were good to excellent measures of each component. Some components comprised only two items; however, Cronbach's alphas typically indicated moderate to high levels of internal consistency. Overall, the results of this study suggest that most of the measures analyzed, excepting the mastery and mutuality scales, can be recommended to examine the family caregiver experience and test supportive interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To identify vision Patient-Reported Outcomes instruments relevant to glaucoma and assess their content validity.

METHODS: MEDLINE, MEDLINE in Process, EMBASE and SCOPUS (to January 2009) were systematically searched. Observational studies or randomised controlled trials, published in English, reporting use of vision instruments in glaucoma studies involving adults were included. In addition, reference lists were scanned to identify additional studies describing development and/or validation to ascertain the final version of the instruments. Instruments' content was then mapped onto a theoretical framework, the World Health Organization International Classification of Functioning, Disability and Health. Two reviewers independently evaluated studies for inclusion and quality assessed instrument content.

RESULTS: Thirty-three instruments were identified. Instruments were categorised into thirteen vision status, two vision disability, one vision satisfaction, five glaucoma status, one glaucoma medication related to health status, five glaucoma medication side effects and six glaucoma medication satisfaction measures according to each instruments' content. The National Eye Institute Visual Function Questionnaire-25, Impact of Vision Impairment and Treatment Satisfaction Survey-Intraocular Pressure had the highest number of positive ratings in the content validity assessment.

CONCLUSION: This study provides a descriptive catalogue of vision-specific PRO instruments, to inform the choice of an appropriate measure of patient-reported outcomes in a glaucoma context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a series of new musical instruments that have been designed to
address questions relating to performative virtuosity in the area of ensemble-based
improvisation. The intentionally exploited inconsistent nature of these instruments
raises questions around traditional notions of instrument mastery and opens up
possible methods of recon?guring the performer-instrument relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When studying heterogeneous aquifer systems, especially at regional scale, a degree of generalization is anticipated. This can be due to sparse sampling regimes, complex depositional environments or lack of accessibility to measure the subsurface. This can lead to an inaccurate conceptualization which can be detrimental when applied to groundwater flow models. It is important that numerical models are based on observed and accurate geological information and do not rely on the distribution of artificial aquifer properties. This can still be problematic as data will be modelled at a different scale to which it was collected. It is proposed here that integrating geophysics and upscaling techniques can assist in a more realistic and deterministic groundwater flow model. In this study, the sedimentary aquifer of the Lagan Valley in Northern Ireland is chosen due to intruding sub-vertical dolerite dykes. These dykes are of a lower permeability than the sandstone aquifer. The use of airborne magnetics allows the delineation of heterogeneities, confirmed by field analysis. Permeability measured at the field scale is then upscaled to different levels using a correlation with the geophysical data, creating equivalent parameters that can be directly imported into numerical groundwater flow models. These parameters include directional equivalent permeabilities and anisotropy. Several stages of upscaling are modelled in finite element. Initial modelling is providing promising results, especially at the intermediate scale, suggesting an accurate distribution of aquifer properties. This deterministic based methodology is being expanded to include stochastic methods of obtaining heterogeneity location based on airborne geophysical data. This is through the Direct Sample method of Multiple-Point Statistics (MPS). This method uses the magnetics as a training image to computationally determine a probabilistic occurrence of heterogeneity. There is also a need to apply the method to alternate geological contexts where the heterogeneity is of a higher permeability than the host rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Cancer may impact negatively on an informal caregiver's health long after treatment has ended. This review identifies the self-report measures currently in use to measure caregivers need for support and determines their scientific soundness and clinical utility.

Method: A systematic electronic database search of Medline, CINAHL, PsychINFO, BNI ProQuest was conducted. The psychometric properties and clinical utility of needs assessment tools for caregivers of cancer survivors (excluding advanced disease) were extracted and summarised.

Results: Seven cancer survivor caregiver needs assessment tools were identified. Data on instrument development was well reported, although variability was noted in their structure and content. The majority demonstrated some degree of reliability and validity; only two were evaluated for test–retest reliability (CaSPUN and SPUNS) with only the SPUNS showing a high degree of reliability over time. The Health Care Needs Survey (HCNS), Needs Assessment of Family Caregivers-Cancer (NAFC-C) and Cancer Caregiving Tasks Consequences and Needs Questionnaire (CaTCoN) have been validated at various stages of the cancer continuum. Minimal data was available on responsiveness.

Conclusion: All assessment tools identified require further psychometric analysis. For research purposes, the use of the SPUNS (with its acceptable test–retest reliability) appears most appropriate; although its length may be of concern for clinical use; therefore, the shorter SCNS-P&C is likely to be more suitable for use clinically. At present, the NAFC-C demonstrates a great potential in both the research and clinical environments; however, it requires further psychometric testing before it can be fully recommended. Further analysis is necessary on ideal response formats and the meaning of a total needs score.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highly heterogeneous aquifer systems, conceptualization of regional groundwater flow models frequently results in the generalization or negligence of aquifer heterogeneities, both of which may result in erroneous model outputs. The calculation of equivalence related to hydrogeological parameters and applied to upscaling provides a means of accounting for measurement scale information but at regional scale. In this study, the Permo-Triassic Lagan Valley strategic aquifer in Northern Ireland is observed to be heterogeneous, if not discontinuous, due to subvertical trending low-permeability Tertiary dolerite dykes. Interpretation of ground and aerial magnetic surveys produces a deterministic solution to dyke locations. By measuring relative permeabilities of both the dykes and the sedimentary host rock, equivalent directional permeabilities, that determine anisotropy calculated as a function of dyke density, are obtained. This provides parameters for larger scale equivalent blocks, which can be directly imported to numerical groundwater flow models. Different conceptual models with different degrees of upscaling are numerically tested and results compared to regional flow observations. Simulation results show that the upscaled permeabilities from geophysical data allow one to properly account for the observed spatial variations of groundwater flow, without requiring artificial distribution of aquifer properties. It is also found that an intermediate degree of upscaling, between accounting for mapped field-scale dykes and accounting for one regional anisotropy value (maximum upscaling) provides results the closest to the observations at the regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.