109 resultados para Geometry, Plane
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
Novel E-plane waveguide filters with periodically loaded resonators are proposed. The proposed filters make use of the slow wave effect in order to achieve improved stopband performance and size reduction of roughly 50% without introducing any complexity in the fabrication process. Numerical and experimental results are presented to validate the argument.
Resumo:
An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.
Resumo:
In the paper we give an exposition of the major results concerning the relation between first order cohomology of Banach algebras of operators on a Banach space with coefficients in specified modules and the geometry of the underlying Banach space. In particular we shall compare the properties weak amenability and amenability for Banach algebras A(X), the approximable operators on a Banach space X. Whereas amenability is a local property of the Banach space X, weak amenability is often the consequence of properties of large scale geometry.
Resumo:
The ability of carbon nanotubes (CNTs) to reinforce and enhance the electrical conductivity of polymer matrices is a function of both the aspect ratio and surface chemistry of the CNTs. Hitherto, due to the variability in MWCNT synthesis methods it has not been possible to study the effect of MWCNT aspect ratio and functionality on polymer composite properties. This paper was the first to report the correlation between MWCNT aspect ratio and functionality on the formation of electrical and rheological percolated networks. Furthermore, the fundamental ballistic conductance of MWCNTs made using arc discharge and chemical vapour deposition techniques was reported.