73 resultados para Generation of 1898
Resumo:
A two-dimensional numerical study of the expansion of a dense plasma through a more rarefied one is reported. The electrostatic ion-acoustic shock, which is generated during the expansion, accelerates the electrons of the rarefied plasma inducing a superthermal population which reduces electron thermal anisotropy. The Weibel instability is therefore not triggered and no self-generated magnetic fields are observed, in contrast with published theoretical results dealing with plasma expansion into vacuum. The shock front develops a filamentary structure which is interpreted as the consequence of the electrostatic ion-ion instability, consistently with published analytical models and experimental results.
Resumo:
The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.
Resumo:
The destruction of stearic acid (SA), the SA test, is a popular approach used to evaluate the activities of photocatalytic films. The destruction of SA via semiconductor photocatalysis is monitored simultaneously, using FT-IR spectroscopy, via the disappearance of SA and the appearance of CO2, Sol-gel and P25 films of titania are used as the semiconductor photocatalytic self-cleaning films. A conversion factor is used of 9.7 x 1015 molecules of SA cm(-2) 1 Cru-1 integrated areas of the peaks in the Fr-IR of SA over the range 2700-3000 cm(-1), which is three times that reported previously by others. As the SA disappeared the concomitant amount of CO2 generated was > 90% that expected throughout the photomineralisation process for the sol-gel titania film. In contrast, the slightly more active, and scattering, P25 fitania films generated CO2 levels that dipped as low as 69% during the course of the photoreaction, but eventually recovered to congruent to 100% that expected based on the amount of SA present. The importance of these results with respect to SA test and the evaluation of new and existing self-cleaning films are discussed briefly. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A linear array of n calcite crystals is shown to allow the generation of a high contrast (> 10: 1) train of 2(n) high energy (> 100 mu J) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup. (c) 2007 Optical Society of America
Resumo:
Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10(20) W cm(-2)) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce P-emitting nuclei of relevance to the nuclear medicine community, namely C-11 and N-13 via (p, n) and (p, alpha) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]