68 resultados para Gain narrowing
Resumo:
Driven by a double 75 ps pulse with 2.2 ns separation, saturated operation of nickel-like Ag, In, Sn, and Sm X-ray lasers have been demonstrated with only 75 J drive energy on target. The variation of X-ray laser output with target length is found to fit well to a simple model for an amplified spontaneous emission (ASE) laser including saturation. Small signal gains of similar to 10 cm(-1), effective gain length products of similar to 18, and saturation irradiance of (1-5)x 10(10) W/cm(2) are measured for these lasers using a fitting procedure. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
Evidence of high gain pumped by recombination has been observed in the 5g-4f transition at 11.1 nn in sodiumlike copper ions with use of a 20-J 2-ps Nd:glass laser system. The time- and space-integrated gain coefficient was 8.8 +/- 1.4 cm(-1), indicating a single-transit amplification of similar to 60 times. This experiment has shown that 2 ps is the optimum pulse duration to drive the sodiumlike copper recombination x-ray lasing at 11.1 nm. (C) 1996 Optical Society of America
Resumo:
Recombining plasmas produced by picosecond laser pulses are characterized by measuring ratio of intensities of resonance lines of H- and He-like ions in the plasmas. It is found that the rapidly recombining plasmas produced by picosecond laser pulses are suitable for high-gain operation.
NEAR-FIELD IMAGING OF THE C-VI HIGH-GAIN RECOMBINATION X-RAY LASER-DRIVEN BY A 20-J, 2 PS LASER-BEAM
Resumo:
The gain coefficient of the strongest 3p --> 3s, J = 2 --> 1 lasing transition at 23.6 nm in the Ne-like Ge collisional excitation scheme has been measured, using the fundamental wavelength from a Nd:glass laser (1.06-mu-m), for a range of incident intensities on massive stripe targets up to 2.2 cm in length. From a threshold incident laser intensity of approximately 6 x 10(12) W/cm2, the gain coefficient rises to approximately 4.5 cm-1 for an irradiation intensity of approximately 2.5 x 10(13) W/cm2, tending towards still higher gain coefficients at higher incident intensities. For targets of maximum length, a gain-length product gL almost-equal-to 10 was reached with a resultant output power at 23.6 nm estimated to be at the approximately kW level. The beam divergence decreased with length to a minimum of approximately 7 mrad but no significant trend in beam pointing with plasma length was observed. From the trend in the gain coefficient, it appears that for a fixed energy laser irradiating a approximately 100-mu-m wide slab targets, an incident intensity of I(i) approximately 1.2 x 10(13) W/cm2 represents an optimum working level, assuming that plasma length is not limited by refractive effects. In addition to the usual valence electron excited 3p --> 3s transitions, the gain coefficient for the core excited 1s(2)2s2p(6)3d --> 1s(2)2s2p(6)3p transition at 19.9 nm has been measured to be approximately 1.5 cm-1 for an incident irradiance of approximately 2.5 x 10(13) W/cm2.