58 resultados para GALAXIES: STAR FORMATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present late-time ( 590 - 994 days) mid-IR photometry of the normal but highly reddened Type IIP supernova SN 2002hh. Bright, cool, slowly fading emission is detected from the direction of the supernova. Most of this flux appears not to be driven by the supernova event but instead probably originates in a cool, obscured star formation region or molecular cloud along the line of sight. We also show, however, that the declining component of the flux is consistent with an SN-powered IR echo from a dusty progenitor CSM. Mid-IR emission could also be coming from newly condensed dust and/or an ejecta/CSM impact, but their contributions are likely to be small. For the case of a CSM-IR echo, we infer a dust mass of as little as 0.036 M-. with a corresponding CSM mass of 3.6(0.01/ r(dg)) M-., where rdg is the dust-to-gas mass ratio. Such a CSM would have resulted from episodic mass loss whose rate declined significantly about 28,000 years ago. Alternatively, an IR echo from a surrounding, dense, dusty molecular cloud might also have been responsible for the fading component. Either way, this is the first time that an IR echo has been clearly identified in a Type IIP supernova. We find no evidence for or against the proposal that Type IIP supernovae produce large amounts of dust via grain condensation in the ejecta. However, within the CSM-IR echo scenario, the mass of dust derived implies that the progenitors of the most common of core-collapse supernovae may make an important contribution to the universal dust content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from ˜20 d before B-band maximum to 1 yr after maximum. We show that SN 2009jf is a slowly evolving and energetic stripped-envelope SN and is likely from a massive progenitor (25-30 Msun). The large progenitor's mass allows us to explain the complete hydrogen plus helium stripping without invoking the presence of a binary companion. The SN occurred close to a young cluster, in a crowded environment with ongoing star formation. The spectroscopic similarity with the He-poor Type Ic SN 2007gr suggests a common progenitor for some SNe Ib and Ic. The nebular spectra of SN 2009jf are consistent with an asymmetric explosion, with an off-centre dense core. We also find evidence that He-rich Ib SNe have a rise time longer than other stripped-envelope SNe, however confirmation of this result and further observations are needed. This paper is based on observations with several telescopes, including NTT(184.D-1151), VLT-UT1(085.D-0750,386.D-0126), NOT, WHT, TNG, PROMPT, Ekar, Calar Alto and Liverpool Telescope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The B5 dark cloud has been identified as a site of low-mass star formation. We report a survey of a selection of the molecular species modelled by the B5 dynamical and chemical model of Charnley et al. at the positions of circumstellar HCN clumps in B5 IRS1. All of the key species observed yield either abundances or upper limits to abundances below both the standard and the predicted values, appearing to show evidence of depletion and/or destruction if the transitions observed are thermalized. Our results are not in good agreement with the model, and they bring into question the interpretation of the structure of B5 IRS1 proposed by Fuller et al. It was expected that HCN clump C might exhibit a higher excitation than HCN clump A, since it appeared to be located within the blueshifted molecular outflow. However, there is no significant difference observed between the two clumps, suggesting that the near-infrared and optical nebulosity is evidence of a reflection nebula rather than shocked material in the outflow. Finally, it is observed that our results are more consistent with gas-grain models than with those models excluding gas-grain interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I have used recent laboratory studies on the reactions of the phosphorus hydride ions, PH(n)+ (n = 0-4) to construct a new model of phosphorus chemistry in interstellar clouds. I find that the non-detection of PN in cold, dark clouds in consistent with the chemical models only if the depletion of phosphorus in large, approximately 10(4) in TMC-1. Although the laboratory studies indicate that organo-phosphorus chains C(n)P can be formed, this large depletion precludes the detection of any phosphorus-bearing moleclues in cold clouds. However, in warm clouds associated with star formation, the depletion of phosphorus may be reduced. In this case one can reproduce the PN abundance toward Orion KL with a depletion factor of about 300. Interestingly, if the organo-phosphorus species are not destroyed by O atoms, I predict fractional abundances in Ori KL of between 10(-11) and 10(-10) for C(n)P (n = 2-4) and HCCP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method ( Mokiem et al. 2005), which combines the stellar atmosphere code fastwind ( Puls et al. 2005) with the genetic algorithm based optimisation routine PIKAIA ( Charbonneau 1995). We derive an age of 7.0 +/- 1.0 and 3.0 +/- 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be similar to 49- 54 kK ( compared to similar to 45- 46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. ( 2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z similar to 1/2 Z(circle dot) environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D-mom as a function of luminosity with predictions for LMC metallicities by Vink et al. ( 2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] lambda lambda 6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M-circle dot. SN2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] lambda 7378. This line is produced by Ni-58, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] lambda 7378 and [Fe II] lambda 7155 (the progenitor of which is Ni-56) to derive a Ni/Fe production ratio of 0.20 +/- 0.07 (by mass), which is a factor 3.4 +/- 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 mu m line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of C60 and C70 — have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud.The complex chemistry that occurs in space is driven mostly through interaction of thegas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regionsalso leads to additional chemical complexity through reactions that take place in ices at onlya few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions — in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at redshift z = 1.388. The light curve peaked at z P1 = 21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with Mu = -22.3 mag. Our extensive optical and near-infrared observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 days to the extraordinary peak luminosity of 4.1 × 1044 erg s-1 (M bol = -22.8 mag) and subsequently faded rapidly. Equally important, the spectral energy distribution is unusually red for an SLSN, with a color temperature of ~6800 K near maximum light, in contrast to previous hydrogen-poor SLSNe, which are bright in the ultraviolet (UV). The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of ~11, 000 km s-1 and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (gsim 5 × 1015 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (1) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (2) models powered by the spindown energy of a rapidly rotating magnetar predict significantly hotter and faster ejecta; and (3) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of ~15 M ⊙ yr-1, and is fairly massive (~2 × 1010 M ⊙), with a stellar population age of ~108 yr, also in contrast to the young dwarf hosts of known hydrogen-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed towards the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. Projected rotational velocities (ve sin i) have been estimated for 334 targets in the VLT-FLAMES Tarantula Survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods. Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results. Projected rotational velocities range up to approximately 450 kms-1 and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 0 <ve <100 km s-1 and the high velocity component having ve ∼ 250 km s-1. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions. The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars.While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations. © ESO 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the ‘explodability’ of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present high quality spectroscopic data for two massive stars in the OB 10 association of M31, OB 10-64 (B0 la) and OB 10-WRI (WC6). Medium resolution spectra of both stars were obtained using the ISIS spectrograph on the William Herschel Telescope. This is supplemented with Hubble Space Telescope STIS UV spectroscopy and Keck I HIRES data for OB 10-64. A non- local thermodynamic equilibrium (LTE) model atmosphere and abundance analysis for OB 10-64 is presented, indicating that this star has similar photospheric CNO, Mg and Si abundances to solar neighbourhood massive stars. A wind analysis of this early B-type supergiant reveals a mass-loss rate of (M)over dot = 1.6 x 10(-6) M-circle dot yr(-1), and v(infinity) = 1650 km s(-1). The corresponding wind momentum is in good agreement with the wind momentum-luminosity relationship found for Galactic early-B supergiants. Observations of OB 10-WRI are analysed using a non-LTE, line-blanketed code, to reveal approximate stellar parameters of log L/L-circle dot similar to 5.7, T-* - 75 kK, v(infinity) similar to 3000 km s(-1), (M)over dot/(M-circle dot yr(-1)) similar to 10(-4.3) adopting a clumped wind with a filling factor of 10 per cent. Quantitative comparisons are made with the Galactic WC6 star HD 92809 (WR23) revealing that OB 10-WR1 is 0.4 dex more luminous, though it has a much lower C/He ratio (similar to0.1 versus 0.3 for HD 92809). Our study represents the first detailed, chemical model atmosphere analysis for either a B-type supergiant or a Wolf- Rayet (WR) star in Andromeda, and shows the potential of how such studies can provide new information on the chemical evolution of galaxies and the evolution of massive stars in the local Universe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very-high-resolution (R~160000) spectroscopic observations are presented for the early B-type star, HD83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines Ha and Hd and the lines of Siii and Siiii for atmospheric parameters of Teff~=21700+/-600K and logg~=4.00+/-0.15dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ~=5 and ~=2kms-1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1-0.2dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung-Russell diagram and normal metal abundance lead us to conclude that HD83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.