60 resultados para Flashing Signals.
Resumo:
Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n = 637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n = 746). A 10-cM multipoint, non-parametric, autosomal genomewide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P = 0.04). Two and four loci yielded nonparametric LOD (NPLs) > 1.0 and > 0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P = 0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.
Resumo:
We here describe novel aspects of CD8(+) and CD4(+) T cell subset interactions that may be clinically relevant and provide new tools for regulating the reconstitution of the peripheral CD8(+) T cell pools in immune-deficient states. We show that the reconstitution capacity of transferred isolated naive CD8(+) T cells and their differentiation of effector functions is limited, but both dramatically increase upon the co-transfer of CD4(+) T cells. This helper effect is complex and determined by multiple factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4(+) T cells, dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By comparing the recovery of (CD44(+)CD62L(high)) T-CM and (CD44(+)CD62L(low)) T-EM CD8(+) T cells, we found that the accumulation of TCM and TEM subsets is differentially regulated. T-CM-cell accumulation depended mainly on type I interferons, interleukin (IL)-6, and IL-15, but was independent of CD4(+) T-cell help. In contrast, TEM-cell expansion was mainly determined by CD4(+) T-cell help and dependent on the expression of IL-2R beta by CD8 cells, on IL-2 produced by CD4(+) T-cells, on IL-15 and to a minor extent on IL-6.
Resumo:
The fruit bat Rousettus aegyptiacus has highly mobile pinnae. Little is known about the role that such movements play in sound localisation however and whether they interact with the process of echolocation in this species. Here we report the correspondence of echolocation signals in free flight with the downward wingbeat and forward movement of the pinnae, and demonstrate that the ears have a greater sensitivity to click stimuli in front of the animal when directed forwards than when back and to the side. The potential significance of the production of echolocation signals whilst the ears are moving from their least sensitive to their most sensitive position is discussed.
Resumo:
In the literature, politeness has been researched within many disciplines. Although Brown and Levinson’s theory of politeness (1978, 1987) is often cited, it is primarily a linguistic theory and has been criticized for its lack of generalizability to all cultures. Consequently, there is a need for a more comprehensive approach to understand and explain politeness. We suggest applying a social signal framework that considers politeness as a communicative state. By doing so, we aim to unify and explain politeness and its corresponding research and identify further research needed in this area.
Resumo:
Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.
Resumo:
Accurate determination of shear wave arrival time using bender elements may be severely affected by a combination of near-field effects and reflected waves. These may mask the first arrival of the shear wave, making its detection difficult in the time domain. This paper describes an approach for measuring the shear wave arrival time through analysis of the output signal in the time-scale domain using a multi-scale wavelet transform. The local maxima lines of the wavelet transform modulus are observed at different scales, and all singularities are mathematically characterised, allowing subsequent detection of the singularity relating to the first arrival. Examples of the use of this approach on typical synthetic and experimental bender element signals are also supplied, and these results are compared with those from other time and frequency domain approaches. The wavelet approach is not affected by near-field effects, but instead is characterised by a relatively consistent singularity related to the shear wave arrival time, across a range of frequencies and noise levels.
Resumo:
Artifact removal from physiological signals is an essential component of the biosignal processing pipeline. The need for powerful and robust methods for this process has become particularly acute as healthcare technology deployment undergoes transition from the current hospital-centric setting toward a wearable and ubiquitous monitoring environment. Currently, determining the relative efficacy and performance of the multiple artifact removal techniques available on real world data can be problematic, due to incomplete information on the uncorrupted desired signal. The majority of techniques are presently evaluated using simulated data, and therefore, the quality of the conclusions is contingent on the fidelity of the model used. Consequently, in the biomedical signal processing community, there is considerable focus on the generation and validation of appropriate signal models for use in artifact suppression. Most approaches rely on mathematical models which capture suitable approximations to the signal dynamics or underlying physiology and, therefore, introduce some uncertainty to subsequent predictions of algorithm performance. This paper describes a more empirical approach to the modeling of the desired signal that we demonstrate for functional brain monitoring tasks which allows for the procurement of a ground truth signal which is highly correlated to a true desired signal that has been contaminated with artifacts. The availability of this ground truth, together with the corrupted signal, can then aid in determining the efficacy of selected artifact removal techniques. A number of commonly implemented artifact removal techniques were evaluated using the described methodology to validate the proposed novel test platform. © 2012 IEEE.
Resumo:
Acidity peaks in Greenland ice cores have been used as critical reference horizons for synchronizing ice core records, aiding the construction of a single Greenland Ice Core Chronology (GICC05) for the Holocene. Guided by GICC05, we examined sub-sections of three Greenland cores in the search for tephra from specific eruptions that might facilitate the linkage of ice core records, the dating of prehistoric tephras and the understanding of the eruptions. Here we report the identification of 14 horizons with tephra particles, including 11 that have not previously been reported from the North Atlantic region and that have the potential to be valuable isochrons. The positions of tephras whose major element data are consistent with ash from the Katmai AD 1912 and Öraefajökull AD 1362 eruptions confirm the annually resolved ice core chronology for the last 700 years. We provide a more refined date for the so-called “AD860B” tephra, a widespread isochron found across NW Europe, and present new evidence relating to the 17th century BC Thera/Aniakchak debate that shows N. American eruptions likely contributed to the acid signals at this time. Our results emphasize the variable spatial and temporal distributions of volcanic products in Greenland ice that call for a more cautious approach in the attribution of acid signals to specific eruptive events.
Resumo:
Self-potential and spectral induced polarization responses associated with microbial processes involved in sulphate reduction have been monitored in a Perspex Winogradsky column filled with glass beads and growth medium. Salt-bridge is utilized as an electrolytic contact between experiment and control column. Equally spaced SP electrodes are used in combination of Ag-AgCl electrodes to compare electrodic and SP signals associated with the microbial processes involved in sulphate reduction. This study reveals that magnitude of SP varies from 5 to -2 mV and Electrodic potential 0 to -20 mV at the time of domination (day 39) of sulphate reducing bacteria which are very small in comparison to those measured by fixing both measuring and reference Ag-AgCl electrodes in experiment column. We observed that real and imaginary parts of complex conductivities increase with increase in production of H2S and CO in the experiment column. Both real and imaginary parts of surface complex conductivity vary at low frequencies similar to typical growth curve of bacterial population. Sodium lactate as a carbon source, dissolved in Lagan River water was flushed into the column for biostimulation on 144th day. The dissolved oxygen in flushed fluid might have killed the anaerobes in the column and decrease in complex conductivities similar to death phase of bacteria is observed for one week. The results obtained from this experiment should contribute to further understanding the biogeophysical responses involved in complex environments.
Read More: http://library.seg.org/doi/abs/10.1190/segj092009-001.57
Resumo:
The subjective performance of the G. 722 7-kHz wideband speech-coding recommendation using music signals is described. A number of audible distortions specific to music signals were found to be present in real-time evaluations of the coder. As a result, three modifications are proposed which are found to improve the performance for music signals. These modifications are compatible with the G. 722 system configuration. The results obtained clearly demonstrate the very high coding efficiency of subband ADPCM (adaptive differential pulse-code modulation) with comparison to digitally companding and ADM schemes when applied to music signals.
Resumo:
We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature of these in the Raman signals.