151 resultados para Fe
Resumo:
Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.
Resumo:
Energy levels and the corresponding transition probabilities for allowed and forbidden transitions among the levels of the ground configuration and first 23 excited configurations of fluorine-like Fe XVIII have been calculated using the multiconfigurational Dirac-Fock GRASP code. A total of 379 lowest bound levels of Fe XVIII is presented, and the energy levels are identified in spectroscopic notations. Transition probabilities, oscillator strengths and line strengths for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these 379 levels are also presented. The calculated energy levels and transition probabilities are compared with experimental data.
Resumo:
Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.
Resumo:
Recent R-matrix calculations of electron impact excitation rates for transitions among the 2s(2)2p(2), 2s2p(3) and 2p(4) levels of Fe XXI are used to derive theoretical electron density (N-e) sensitive emission-line ratios involving 2S2(2)p(2)-2s2p(3) transitions in the similar to 98-146 Angstrom wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe XXI ratios for a solar flare, obtained with the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N-e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.
Resumo:
The configuration-interaction method as implemented in the computer code CIV3 is used to determine energy levels, electric dipole radiative transition wavelengths, oscillator strengths and transition probabilities for inner-shell excitation of transitions in Fe XV and Fe XVI. Specifically, transitions are considered of the type 1s(2) 2s(2) 2p(6) 3s(2) -1s(2) 2s(2) 2p(5) 3l3l' 3l" (l, l' and l" = s,p or d) in FeXV and 1s(2) 2s(2) 2p(6) 3s- 1s(2) 2s(2) 2p(5) 3l3l' (l and l' = s,p or d) in FeXVI, using the relativistic Breit-Pauli approach. An assessment of the accuracy of the derived atomic data is performed.
Resumo:
Energy levels for transitions among the lowest 24 fine- structure levels belonging to the 1s(2)nl(n greater than or equal to 5) configurations of Li-like Ar XVI and Fe XXIV have been calculated using the fully relativistic GRASP code. Oscillator strengths, radiative rates and line strengths have also been generated among these levels for the four types of transitions: electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2). Comparisons are made for the electric dipole transitions with other available results, and the accuracy of the present data is assessed.
Resumo:
Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.
Resumo:
New R-matrix calculations of electron impact excitation rates for Fe XI are used to determine theoretical emission line ratios applicable to solar and stellar coronal observations. These are subsequently compared to solar spectra of the quiet Sun and an active region made by the Solar EUV Rocket Telescope and Spectrograph (SERTS-95), as well as Skylab observations of two flares. Line blending is identified, and electron densities of 10(9.3), 10(9.7), greater than or equal to 10(10.8), and greater than or equal to 10(11.3) cm(-3) are found for the quiet Sun, active region, and the two flares, respectively. Observations of the F5 IV-V star Procyon, made with the Extreme Ultraviolet Explorer (EUVE) satellite, are compared and contrasted with the solar observations. It is confirmed that Procyon's average coronal conditions are very similar to those seen in the quiet Sun, with N-e = 10(9.4) cm(-3). In addition, although the quiet Sun is the closest solar analog to Procyon, we conclude that Procyon's coronal temperatures are slightly hotter than solar. A filling factor of 25(-12)(+38)% was derived for the corona of Procyon.
Resumo:
Aims. In this paper we report calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions in Fe XVI. Methods. For energy levels and radiative rates we have used the General purpose Relativistic Atomic Structure Package ( grasp), and for the compuations of collision strengths the Dirac Atomic R-matrix Code (darc) has been adopted. Results. Energies for the lowest 39 levels among the n
Resumo:
Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 angstrom wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 angstrom), performed using the most recent Fe XV atomic physics calculations in conjunction with a chianti synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e.similar to 0.1 angstrom). An exception is the intensity ratio I(3s3p P-3(2)-3p(2) P-3(1))/I(3s3p P-3(2)-3p(2) D-1(2))=I(321.8 angstrom)/I(327.0 angstrom), which appears to provide good estimates of the electron density at this spectral resolution.
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.