107 resultados para Fatigue calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propagation behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to + 63 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scalable large vocabulary, speaker independent speech recognition system is being developed using Hidden Markov Models (HMMs) for acoustic modeling and a Weighted Finite State Transducer (WFST) to compile sentence, word, and phoneme models. The system comprises a software backend search and an FPGA-based Gaussian calculation which are covered here. In this paper, we present an efficient pipelined design implemented both as an embedded peripheral and as a scalable, parallel hardware accelerator. Both architectures have been implemented on an Alpha Data XRC-5T1, reconfigurable computer housing a Virtex 5 SX95T FPGA. The core has been tested and is capable of calculating a full set of Gaussian results from 3825 acoustic models in 9.03 ms which coupled with a backend search of 5000 words has provided an accuracy of over 80%. Parallel implementations have been designed with up to 32 cores and have been successfully implemented with a clock frequency of 133?MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of cemented femoral hip replacements fail as a consequence of loosening. One design feature that may affect loosening rates is implant surface finish. To determine whether or not surface finish effects fatigue damage accumulation in a bone cement mantle, we developed an experimental model of the implanted proximal femur that allows visualisation of damage growth in the cement layer. Five matt surface and five polished surface stems were tested. Pre-load damage and damage after two million cycles was measured. Levels of pre-load (shrinkage) damage were the same for both matt and polished stems; furthermore damage for matt vs. polished stems was not significantly different after two million cycles. This was due to the large variability in damage accumulation rates. Finite element analysis showed that the stress is higher for the polished (assumed debonded) stem, and therefore we must conclude that either the magnitude of the stress increase is not enough to appreciably increase the damage accumulation rate or, alternatively, the polished stem does not debond immediately from the cement. Significantly (P = 0.05) more damage was initiated in the lateral cement compared to the medial cement for both kinds of surface finish. It was concluded that, despite the higher cement stresses with debonded stems, polished prostheses do not provoke the damage accumulation failure scenario. (C) 2003 IPEM. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite conductivity in superconductors is taken into account by approximate boundary conditions imposed directly when deriving pair summatory equations, which are solved using the Galerkin method and the basis describing the edge singularity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for the complicated iron-peak ion Cr II. We consider specifically the allowed lines for transitions from the 3d(5) and 3d(4)4s even parity configuration states to the 3d(4)4p odd parity configuration levels. The parallel suite of R-Matrix packages, RMATRX II, which have recently been extended to allow for the inclusion of relativistic effects, were used to compute the collision cross sections. A total of 108 LS pi/280 J pi levels from the basis configurations 3d(5), 3d(4)4s, and 3d(4)4p were included in the wavefunction representation of the target including all doublet, quartet, and sextet terms. Configuration interaction and correlation effects were carefully considered by the inclusion of seven more configurations and a pseudo-corrector (4d) over bar type orbital. The 10 configurations incorporated into the Cr II model thus listed are 3d(5), 3d(4)4s, 3d(4)4p, 3d(3)4s(2), 3d(3)4p(2), 3d(3)4s4p, 3d(4)(4d) over bar, 3d(3)4s (4d) over bar, 3d(3)4p (4d) over bar, and 3d(3)(4d) over bar (2), constituting the largest Cr II target model considered to date in a scattering calculation. The Maxwellian averaged effective collision strengths are computed for a wide range of electron temperatures 2000-100,000 K which are astrophysically significant. Care has been taken to ensure that the partial wave contributions to the collision strengths for these allowed lines have converged with "top-up" from the Burgess-Tully sum rule incorporated. Comparisons are made with the results of Bautista et al. and significant differences are found for some of the optically allowed lines considered.