296 resultados para FUSION PLASMAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor Exelan®, Lam Research has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of an intense electron-beam produced by the Vulcan petawatt laser through dense plasmas has been studied by imaging with high resolution the optical emission due to electron transit through the rear side of coated foam targets. It is observed that the MeV-electron beam undergoes strong filamentation and the filaments organize themselves in a ringlike structure. This behavior has been modeled using particle-in-cell simulations of the laser-plasma interaction as well as of the transport of the electron beam through the preionized plasma. In the simulations the filamentary structures are reproduced and attributed to the Weibel instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear coupling between finite amplitude ion thermal waves (ITWs) and quasistationary density perturbations in a pair-ion plasma is considered. A generalized nonlinear Schrödinger equation is derived for the ITW electric field envelope, accounting for large amplitude quasistationary plasma slow motion describing the ITW ponderomotive force. The present theory accounts for the trapping of ITWs in a large amplitude ion density hole. The small amplitude limit is considered and exact analytical solutions are obtained. Finite amplitude solutions are obtained numerically and their characteristics are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of charged particles in partially turbulent magnetic systems is investigated from first principles. A generalized compound transport model is proposed, providing an explicit relation between the mean-square deviation of the particle parallel and perpendicular to a magnetic mean field, and the mean-square deviation which characterizes the stochastic field-line topology. The model is applied in various cases of study, and the relation to previous models is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral gas depletion mechanisms are investigated in a dense low-temperature argon plasma-an inductively coupled magnetic neutral loop (NL) discharge. Gas temperatures are deduced from the Doppler profile of the 772.38 nm line absorbed by argon metastable atoms. Electron density and temperature measurements reveal that at pressures below 0.1 Pa, relatively high degrees of ionization (exceeding 1%) result in electron pressures, p(e) = kT(e)n(e), exceeding the neutral gas pressure. In this regime, neutral dynamics has to be taken into account and depletion through comparatively high ionization rates becomes important. This additional depletion mechanism can be spatially separated due to non-uniform electron temperature and density profiles (non-uniform ionization rate), while the gas temperature is rather uniform within the discharge region. Spatial profiles of the depletion of metastable argon atoms in the NL region are observed by laser induced fluorescence spectroscopy. In this region, the depletion of ground state argon atoms is expected to be even more pronounced since in the investigated high electron density regime the ratio of metastable and ground state argon atom densities is governed by the electron temperature, which peaks in the NL region. This neutral gas depletion is attributed to a high ionization rate in the NL zone and fast ion loss through ambipolar diffusion along the magnetic field lines. This is totally different from what is observed at pressures above 10 Pa where the degree of ionization is relatively low (