45 resultados para FRACTAL DESCRIPTORS
Resumo:
Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.
Resumo:
P2Y(1) is an ADP-activated G protein-coupled receptor (GPCR). Its antagonists impede platelet aggregation in vivo and are potential antithrombotic agents. Combining ligand and structure-based modeling we generated a consensus model (LIST-CM) correlating antagonist structures with their potencies. We docked 45 antagonists into our rhodopsin-based human P2Y(1) homology model and calculated docking scores and free binding energies with the Linear Interaction Energy (LIE) method in continuum-solvent. The resulting alignment was also used to build QSAR based on CoMFA, CoMSIA, and molecular descriptors. To benefit from the strength of each technique and compensate for their limitations, we generated our LIST-CM with a PLS regression based on the predictions of each methodology. A test set featuring untested substituents was synthesized and assayed in inhibition of 2-MeSADP-stimulated PLC activity and in radioligand binding. LIST-CM outperformed internal and external predictivity of any individual model to predict accurately the potency of 75% of the test set.
Resumo:
Burkholderia species RASC and Pseudomonas fluorescens were marked with lux genes, encoding for bioluminescence and used to assess the toxicity of mono-, di- and tri-chlorophenols by determining the decline in bioluminescence following exposure to the compounds in aqueous solution. Toxicity was expressed as a 50% effective concentration value (EC50, equating to the concentration of compound which caused a 50% decline in bioluminescence. Comparing the toxicity values of the compounds showed that, in general, increasing the degree of chlorination, increased toxicity. By carrying out forward multiple linear regressions with log10 EC50 values and physio-chemical descriptors, it was shown that molecular parameters describing the hydrogen bonding nature of a chlorophenol provided a better fit than regressions between toxicity data and log10 Kow alone. Utilising these descriptor variables in equations, it was shown that the toxicity of chlorophenols to the lux marked bacteria could be predicted from the compounds physio-chemical characteristics. By correlating lux marked RASC c2 and P. fluorescens EC50 values with toxicity values using Pimephales promelas (fathead minnow), Tetrahymena pyriformis (ciliate) and marine bacterium Vibriofischeri, it was apparent that lux marked RASC c2 correlated well with the freshwater aquatic species (P. promelas and T. pyriformis). This implied that for predictions of toxicity of organic xenobiotic compounds to higher organisms, lux marked RASC c2 could be utilised as a rapid surrogate.
Resumo:
In this paper we demonstrate a simple and novel illumination model that can be used for illumination invariant facial recognition. This model requires no prior knowledge of the illumination conditions and can be used when there is only a single training image per-person. The proposed illumination model separates the effects of illumination over a small area of the face into two components; an additive component modelling the mean illumination and a multiplicative component, modelling the variance within the facial area. Illumination invariant facial recognition is performed in a piecewise manner, by splitting the face image into blocks, then normalizing the illumination within each block based on the new lighting model. The assumptions underlying this novel lighting model have been verified on the YaleB face database. We show that magnitude 2D Fourier features can be used as robust facial descriptors within the new lighting model. Using only a single training image per-person, our new method achieves high (in most cases 100%) identification accuracy on the YaleB, extended YaleB and CMU-PIE face databases.
Resumo:
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the cases, when distance and epoch of discovery do not allow a direct approach. To study the circumstellar environment of SN2011fe we have obtained high-resolution spectroscopy of SN2011fe on 12 epochs, from 8 to 86 days after the estimated date of explosion, targeting in particular at the time evolution of CaII and NaI. Three main absorption systems are identified from CaII and NaI, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The Galactic and host galaxy reddening, deduced from the integrated equivalent widths (EW) of the NaI lines are E(B-V)=0.011+/-0.002 and E(B-V)=0.014+/-0.002 mag, respectively. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm HI line at the projected SN position (~180 km/s). During the ~3 months covered by our observations, its EW changed by 15.6+/-6.5 mA. This small variation is shown to be compatible with the geometric effects produced by therapid SN photosphere expansion coupled to the patchy fractal structure of the ISM. The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales
Resumo:
Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.
Resumo:
The Marine Strategy Framework Directive (MSFD) requires that European Union Member States achieve "Good Environmental Status" (GES) in respect of 11 Descriptors of the marine environment by 2020. Of those, Descriptor 4, which focuses on marine food webs, is perhaps the most challenging to implement since the identification of simple indicators able to assess the health of highly dynamic and complex interactions is difficult. Here, we present the proposed food web criteria/indicators and analyse their theoretical background and applicability in order to highlight both the current knowledge gaps and the difficulties associated with the assessment of GES. We conclude that the existing suite of indicators gives variable focus to the three important food web properties: structure, functioning and dynamics, and more emphasis should be given to the latter two and the general principles that relate these three properties. The development of food web indicators should be directed towards more integrative and process-based indicators with an emphasis on their responsiveness to multiple anthropogenic pressures. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The management of water resources in Ireland prior to the Water Framework Directive (WFD) has focussed on surface water and groundwater as separate entities. A critical element to the successful implementation of the
WFD is to improve our understanding of the interaction between the two and flow mechanisms by which groundwaters discharge to surface waters. An improved understanding of the contribution of groundwater to surface water is required for the classification of groundwater body status and the determination of groundwater quality thresholds. The results of the study will also have a wider application to many areas of the WFD.
A subcommittee of the WFD Groundwater Working Group (GWWG) has been formed to develop a methodology to estimate the groundwater contribution to Irish Rivers. The group has selected a number of analytical techniques to quantify components of stream flow in an Irish context (Master Recession Curve, Unit Hydrograph, Flood Studies Report methodologies and
hydrogeological analytical modelling). The components of stream flow that can be identified include deep groundwater, intermediate and overland. These analyses have been tested on seven pilot catchments that have a variety of hydrogeological settings and have been used to inform and constrain a mathematical model. The mathematical model used was the NAM (NedbØr-AfstrØmnings-Model) rainfall-runoff model which is a module of DHIs MIKE 11 modelling suite. The results from these pilot catchments have been used to develop a decision model based on catchment descriptors from GIS datasets for the selection of NAM parameters. The datasets used include the mapping of aquifers, vulnerability and subsoils, soils, the Digital Terrain Model, CORINE and lakes. The national coverage of the GIS datasets has allowed the extrapolation of the mathematical model to regional catchments across Ireland.
Resumo:
Science journalism is the source of much of the science an individual will encounter beyond formal education. Science-based media reports, which might have been associated with informal education, are increasingly becoming incorporated into formal school contexts. Unlike science textbooks, the science reported in the news is often tentative and sometimes contested. It can involve difficult socio-scientific issues. Descriptors of ‘science literacy’ generally include reading and responding critically to media reports of science. The challenge of using science-based news effectively encourages teachers to reassess their knowledge and pedagogical practices.
In addition to creating interest in science and making links beyond the classroom, news media can be used to introduce pupils to elements of science enquiry and teachers can promote basic literacy and critical reading skills through systematic and imaginative use of media reports with a science component.
This chapter explores the knowledge, skills and attitudes that underpin the use of science journalism in the classroom. The unique characteristics and constraints of science journalism that influence the way science is presented and perceived are considered, and the importance of media awareness as a foundation for critical reading of science news is argued. Finally the characteristics of teaching programmes to support critical engagement with science-based media reports are outlined and the opportunities for cross-curricular initiatives highlighted.
Resumo:
INTRODUCTION:Cerebral small-vessel disease has been implicated in the development of Alzheimer’sdisease (AD). The retinal microvasculature enables non-invasive visualization andevaluation of the systemic microcirculation. We evaluated retinal microvascular parametersin a case-control study of AD patients and cognitively-normal controls.
METHODS:Retinal images were computationally analyzed and quantitative retinal parameters (caliber,fractal dimension, tortuosity, and bifurcation) measured. Regression models were used tocompute odds ratios (OR) and confidence intervals (CI) for AD with adjustment forconfounders.
RESULTS:Retinal images were available in 213 AD participants and 294 cognitively-normal controls.Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77[CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97])were more likely to have AD following appropriate adjustment.
DISCUSSION:Patients with AD have a sparser retinal microvascular network and retinal microvascularvariation may represent similar pathophysiological events within the cerebralmicrovasculature of patients with AD.
Resumo:
ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.
Resumo:
The spatial distribution of a species can be characterized at many different spatial scales, from fine-scale measures of local population density to coarse-scale geographical-range structure. Previous studies have shown a degree of correlation in species' distribution patterns across narrow ranges of scales, making it possible to predict fine-scale properties from coarser-scale distributions. To test the limits of such extrapolation, we have compiled distributional information on 16 species of British plants, at scales ranging across six orders of magnitude in linear resolution (1 in to 100 km). As expected, the correlation between patterns at different spatial scales tends to degrade as the scales become more widely separated. There is, however, an abrupt breakdown in cross-scale correlations across intermediate (ca. 0.5 km) scales, suggesting that local and regional patterns are influenced by essentially non-overlapping sets of processes. The scaling discontinuity may also reflect characteristic scales of human land use in Britain, suggesting a novel method for analysing the 'footprint' of humanity on a landscape.
Resumo:
Background: Chronic kidney disease (CKD) and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC) and fractal dimension (DF), with both hypertension and CKD in elderly Irish nuns.
Methods: Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES) were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI), refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD), cerebrovascular accident (CVA), diabetes and medication use.
Results: In total, 1122 (91%) participants (mean age: 76.3 [range: 56-100] years) had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE) in a fully adjusted analysis (P = 0.002; effect size= -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm). No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found.
Conclusions: Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.
Resumo:
Background: Unexplained chronic cough (UCC) causes significant quality of life impairment. There is a need to identify effective assessment and treatment approaches for UCC.
Methods: This systematic review of randomized controlled clinical trials asked: What is the efficacy of treatment compared to usual care on cough severity, cough frequency, and cough-related quality of life in patients with unexplained chronic cough (UCC)? Studies of adults and adolescents >12 years with a chronic cough of >8 weeks duration that was unexplained after systematic investigation and treatment were included and assessed for relevance and quality. Based upon the systematic review, guideline suggestions were developed and voted upon using CHEST organization methodology.
Results: 11 RCTs and 5 systematic reviews were included. The 11 RCTs reported data on 570 participants with chronic cough who received a variety of interventions. Study quality was high in 10 RCTs. The studies used a variety of descriptors and assessments to identify unexplained chronic cough. While gabapentin and morphine showed positive effects on cough-related quality of life, only gabapentin was supported as a treatment recommendation. Studies of inhaled corticosteroids (ICS) suffered from intervention fidelity bias, and when this was addressed, ICS were not found to be effective for UCC. Esomeprazole was not effective for UCC without features of gastroesophageal acid reflux. Studies addressing non-acid gastroesophageal reflux were not identified. A multimodality speech pathology intervention improved cough severity.
Conclusions: The evidence supporting the diagnosis and management of UCC is limited. UCC requires further study to establish agreed terminology and the optimal methods of investigation using established criteria for intervention fidelity. Speech pathology based cough suppression is suggested as a treatment option for UCC. This guideline presents suggestions for diagnosis and treatment based on the best available evidence and identifies gaps in our knowledge and areas for future research.
Resumo:
Quantitative structure-property relationship (QSPR) models were firstly established for the hydrophobic substituent constant (πX) using the theoretical descriptors derived solely from electrostatic potentials (EPSs) at the substituent atoms. The descriptors introduced are found to be related to hydrogen-bond basicity, hydrogen-bond acidity, cavity, or dipolarity/polarizability terms in linear solvation energy relationship, which endows the models good interpretability. The predictive capabilities of the models constructed were also verified by rigorous Monte Carlo cross-validation. Then, eight groups of meta- or para- disubstituted benzenes and one group of substituted pyridines were investigated. QSPR models for individual systems were achieved with the ESP-derived descriptors. Additionally, two QSPR models were also established for Rekker's fragment constants (foct), which is a secondary-treatment quantity and reflects average contribution of the fragment to logP. It has been demonstrated that the descriptors derived from ESPs at the fragments, can be well used to quantitatively express the relationship between fragment structures and their hydrophobic properties, regardless of the attached parent structure or the valence state. Finally, the relations of Hammett σ constant and ESP quantities were explored. It implies that σ and π, which are essential in classic QSAR and represent different type of contributions to biological activities, are also complementary in interaction site.