44 resultados para Expressive timing
Resumo:
Molecular communication is set to play an important role in the design of complex biological and chemical systems. An important class of molecular communication systems is based on the timing channel, where information is encoded in the delay of the transmitted molecule - a synchronous approach. At present, a widely used modeling assumption is the perfect synchronization between the transmitter and the receiver. Unfortunately, this assumption is unlikely to hold in most practical molecular systems. To remedy this, we introduce a clock into the model - leading to the molecular timing channel with synchronization error. To quantify the behavior of this new system, we derive upper and lower bounds on the variance-constrained capacity, which we view as the step between the mean-delay and the peak-delay constrained capacity. By numerically evaluating our bounds, we obtain a key practical insight: the drift velocity of the clock links does not need to be significantly larger than the drift velocity of the information link, in order to achieve the variance-constrained capacity with perfect synchronization.
Resumo:
Traditionally, audio-motor timing processes have been understood as motor output from an internal clock, the speed of which is set by heard sound pulses. In contrast, this paper proposes a more ecologically-grounded approach, arguing that audio-motor processes are better characterized as performed actions on the perceived structure of auditory events. This position is explored in the context of auditory sensorimotor synchronization and continuation timing. Empirical research shows that the structure of sounds as auditory events can lead to marked differences in movement timing performance. The nature of these effects is discussed in the context of perceived action-relevance of auditory event structure. It is proposed that different forms of sound invite or support different patterns of sensorimotor timing. Hence, the temporal information in looped auditory signals is more than just the interval durations between onsets: all metronomes are not created equal. The potential implications for auditory guides in motor performance enhancement are also described.
Resumo:
While the origins of consonance and dissonance in terms of acoustics, psychoacoustics and physiology have been debated for centuries, their plausible effects on movement synchronization have largely been ignored. The present study aims to address this by investigating whether, and if so how, consonant/dissonant pitch intervals affect the spatiotemporal properties of regular reciprocal aiming movements. We compared movements synchronized either to consonant or to dissonant sounds, and showed that they were differently influenced by the degree of consonance of the sound presented. Interestingly, the difference was present after the sound stimulus was removed. In this case, the performance measured after consonant sound exposure was found to be more stable and accurate, with a higher percentage of information/movement coupling (tau-coupling) and a higher degree of movement circularity when compared to performance measured after the exposure to dissonant sounds. We infer that the neural resonance representing consonant tones leads to finer perception/action coupling which in turn may help explain the prevailing preference for these types of tones.
Resumo:
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Resumo:
The hot-JupiterWASP-10bwas reported by Maciejewski et al. to showtransit timing variations (TTVs) with an amplitude of ~3.5 min. These authors proposed that the observed TTVs were caused by a 0.1MJup perturbing companion with an orbital period of ~5.23 d, and hence, close to the outer 5:3 mean-motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov Chain Monte Carlo transit fitting code. Transit depth differences reported forWASP-10b are thought to be due to starspot-induced brightness modulation of the host star. Assuming the star is brighter at the activity minimum, we favour a small planetary radius. We find Rp = 1.039+0.043 -0.049RJup in agreement with Johnson et al. and Maciejewski et al. Recent studies find no evidence for a significant eccentricity in this system. We present consistent system parameters for a circular orbit and refine the orbital ephemeris ofWASP-10b. Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on two previously published transits that have been incorrectly normalized. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10b are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.
Resumo:
The detection of exoplanets is currently of great topical interest in astronomy. The Rapid Imager for Surveys of Exoplanets 2 (RISE2) camera will be built for exoplanet studies and in particular for detection of transit timing variations (TTV) induced by the presence of a third body in the system. It will be identical to RISE which has been running successfully on the 2m Liverpool Telescope since 2008 but modified for the 2.3m ARISTARCHOS telescope. For TTV work the RISE/LT combination is regularly producing timings with accuracy <10 seconds making it the best suited instrument for this work. Furthermore, RISE2/AT has the added benefit of being located at a significantly different longitude to the LT/RISE on La Palma, hence extending the transit coverage.
Resumo:
ThetimingofNeanderthal disappearanceandtheextent to whichthey overlapped with the earliest incoming anatomically modern humans (AMHs)inEurasia arekey questions inpalaeoanthropology1,2 .Deter- mining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, havehinderedreliable datingof the period,as theradiocarbonmethod reaches its limit at 50,000 years ago3 .Herewe apply improved accel- erator mass spectrometry 14C techniques to construct robust chro- nologies from 40 key Mousterian and Neanderthal archaeological sites, ranging fromRussia toSpain.Bayesianagemodellingwas used togenerate probability distributionfunctions todetermine the latest appearancedate.Weshowthat theMousterianendedby41,030–39,260 calibratedyears BP(at95.4%probability) acrossEurope.Wealsodem- onstrate that succeeding ‘transitional’ archaeological industries, one ofwhich has beenlinked withNeanderthals (Cha ˆtelperronian)4 ,end at a similar time. Our data indicate that the disappearance of Nean- derthals occurred at different times in different regions.Comparing the data with results obtained fromthe earliest datedAMHsites in Europe, associated with the Uluzzian technocomplex5 , allows us to quantify the temporal overlap between the two human groups. The results revealasignificantoverlap of 2,600–5,400years (at 95.4%prob- ability).This hasimportant implications formodels seeking toexplain the cultural, technological and biological elements involved in the replacement of Neanderthals byAMHs.Amosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and sym- bolic behaviours, as well as possible genetic exchanges, between the two groups.
Resumo:
Static timing analysis provides the basis for setting the clock period of a microprocessor core, based on its worst-case critical path. However, depending on the design, this critical path is not always excited and therefore dynamic timing margins exist that can theoretically be exploited for the benefit of better speed or lower power consumption (through voltage scaling). This paper introduces predictive instruction-based dynamic clock adjustment as a technique to trim dynamic timing margins in pipelined microprocessors. To this end, we exploit the different timing requirements for individual instructions during the dynamically varying program execution flow without the need for complex circuit-level measures to detect and correct timing violations. We provide a design flow to extract the dynamic timing information for the design using post-layout dynamic timing analysis and we integrate the results into a custom cycle-accurate simulator. This simulator allows annotation of individual instructions with their impact on timing (in each pipeline stage) and rapidly derives the overall code execution time for complex benchmarks. The design methodology is illustrated at the microarchitecture level, demonstrating the performance and power gains possible on a 6-stage OpenRISC in-order general purpose processor core in a 28nm CMOS technology. We show that employing instruction-dependent dynamic clock adjustment leads on average to an increase in operating speed by 38% or to a reduction in power consumption by 24%, compared to traditional synchronous clocking, which at all times has to respect the worst-case timing identified through static timing analysis.
Resumo:
We explored the brain's ability to quickly prevent a pre-potent but unwanted motor response. To address this, transcranial magnetic stimulation was delivered over the motor cortex (hand representation) to probe excitability changes immediately after somatosensory cues prompted subjects to either move as fast as possible or withhold movement. Our results showed a difference in motor cortical excitability 90 ms post-stimulus contingent on cues to either promote or prevent movement. We suggest that our study design emphasizing response speed coupled with well-defined early probes allowed us to extend upon similar past investigations into the timing of response inhibition.