70 resultados para Exposition lumineuse


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the fugues of the WTC II, there are some fugal techniques and procedures that were not explored in the first book. Here, the ‘fugal techniques’ include parallel entries (as used in the fugues in D-sharp minor, G minor and B-flat minor) and double counterpoint at the tenth or twelfth as well as fifteenth (as used in the fugues in G minor and B major). The ‘fugal procedures’, on the other hand, refer to meticulously planned multi-exposition architecture (as seen in the fugues in F-sharp minor exploiting two subsidiary subjects, and B-flat minor exploiting inversion and stretto) and a form in which the appearance of the subsidiary subject is gradually predicted in the fugal discourse (viz. C-sharp minor, G-sharp minor and B major). All these new ideas helped Bach to write more dramatic, more profound fugues for WTC II. The paper will consider how Bach came to acquire the new techniques and to use them in such ways, and what motivated him to adopt these new compositional approaches. Do they offer any clues for our better understanding of why Bach compiled the WTC II?

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern Multiple-Input Multiple-Output (MIMO) communication systems place huge demands on embedded processing resources in terms of throughput, latency and resource utilization. State-of-the-art MIMO detector algorithms, such as Fixed-Complexity Sphere Decoding (FSD), rely on efficient channel preprocessing involving numerous calculations of the pseudo-inverse of the channel matrix by QR Decomposition (QRD) and ordering. These highly complicated operations can quickly become the critical prerequisite for real-time MIMO detection, exaggerated as the number of antennas in a MIMO detector increases. This paper describes a sorted QR decomposition (SQRD) algorithm extended for FSD, which significantly reduces the complexity and latency
of this preprocessing step and increases the throughput of MIMO detection. It merges the calculations of the QRD and ordering operations to avoid multiple iterations of QRD. Specifically, it shows that SQRD reduces the computational complexity by over 60-70% when compared to conventional
MIMO preprocessing algorithms. In 4x4 to 7x7 MIMO cases, the approach suffers merely 0.16-0.2 dB reduction in Bit Error Rate (BER) performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive Multiple-Input Multiple-Output (MIMO) systems achieve a much higher information rate than conventional fixed schemes due to their ability to adapt their configurations according to the wireless communications environment. However, current adaptive MIMO detection schemes exhibit either low performance (and hence low spectral efficiency) or huge computational
complexity. In particular, whilst deterministic Sphere Decoder (SD) detection schemes are well established for static MIMO systems, exhibiting deterministic parallel structure, low computational complexity and quasi-ML detection performance, there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation detection scheme. Fixed Complexity Sphere Decoding (FSD) and Real-Values FSD (RFSD) are modified and combined into a hybrid scheme exploited at low and medium SNR to provide the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, BChase and Decision Feedback (DFE) schemes are exploited in the high SNR regions. This algorithm provides the facility to balance the detection complexity with BER performance with compatible information rate in dynamic, adaptive MIMO communications
environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All houses selected for exhibition in "Houses of the World 2013" exposition in Ljubljana, Kongresni Trg to be published in the "Houses of the world 2013" by Hise Magazine. House at Bogwest selected for publication and exhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In hypersonic flights, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling gas turbine engine, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt nosed spacecraft flying at Mach number 6.56 and 40 degree angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. Computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared each other. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.