169 resultados para Expanded Bed Adsorption
Resumo:
This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.
Resumo:
The purification capacity of a laboratory scale tidal flow reed bed system with final effluent recirculation at a ratio of 1:1 was investigated in this study. In particular, this four-stage reed bed system was highly loaded with strong agricultural wastewater. Under the hydraulic and organic loading rates as high as 0.43 m3/m2d and 1055 gCOD/m2d, respectively, the average removal efficiencies of COD, BOD5, SS, NH4-N and P were 77%, 78%, 66%, 62% and 38%. Even with the high loading rates, approximately 30% of NH4-N was converted into NO2-N and NO3-N from the mid-stage of the system where nitrification took place. The results suggest that the multi-stage reed bed system could be employed to treat strong wastewater under high loading, especially for the substantive mass removal of solids, organic matter and ammoniacal-nitrogen. Tidal flow combined with effluent recirculation is a favourable operation strategy to achieve this objective.
Resumo:
Background: Effective bed use is crucial to an efficient NHS. Current targets suggest a decrease in mean occupancy as the most appropriate method of improving overall efficiency. The elderly and those suffering from complex medical problems are thought to account for a high proportion of overall bed occupancy.
Aim: To assess the effect of prolonged hospital stay (>100 days) on overall bed occupancy in a modern teaching hospital.
Design: Retrospective analysis.
Methods: Analysis of all admission episodes (n = 117 178) over a five-year period in a large teaching hospital in a single UK region, serving a population of approximately 200 000. A logistic regression multi-factorial model was used to assess the effect of demographic and diagnostic variables on duration of stay.
Results: A prolonged stay (>100 days) was seen in 648 admission episodes (0.6%). These accounted for 11% of the overall bed occupancy over the 5-year period. Excluding all prolonged admission episodes from our analysis made no difference to the overall median length of stay.
Discussion: Prolonged hospitalizations have a significant impact on bed occupancy. Targeting these very long (>100 days) hospital stays may better improve overall efficiency, compared to targeting mean or median length of stay.
Resumo:
The adsorption of cadmium(II) on freshly precipitated aluminium(III) hydroxide in the presence of a range of chelates has been investigated. By precipitating the metal, chelate and adsorbent together it is possible to change the pH variation of the metal-complex adsorption from anionic, ligand-like, binding to cationic binding. This is a general phenomenon and is explained by the formation of a ternary Al-O-Cd-L surface species. As a consequence of the preparation method, the pH edge is found to shift to lower pH values in the presence of the chelate which gives rise to an apparent increase in adsorption of Cd2+. This increase is, in general, most pronounced at [chelate] / [metal] > 1. Computer modelling shows that the observed trends result from the competition between Al-O-Cd-L and Al-L for the available aluminium( III) binding sites. The enhanced adsorption in the presence of phenylenediaminetetraacetate is anomalous since it is observed at a [ chelate] / [metal] approximate to 0.1 and cannot be interpreted by the simple competition model.
Resumo:
Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N-2 dissociation, all the transition states of the hydrogenation reactions from N to NH3 are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed. (c) 2007 American Institute of Physics.
Resumo:
RAIRS experiments have been performed to investigate the adsorption of NO on Pt{211}. Results show that adsorption is complex and strongly temperature dependent. At 307 K, three bands are seen at saturation with frequencies of 1801, 1609, and 1576 cm(-1). However, at 120 K only two bands, at 1688 and 1620 cm(-1), are observed. To help with the assignment of these vibrational bands, DFT calculations were also performed. The calculations show that a bridged NO species, bonded to the step edge, is the most stable species on the surface and gives rise to the band observed at 1610-1620 cm(-1). The calculations also suggest that the temperature dependence of NO adsorption on Ptf{211} can be assigned to NO dissociation which occurs at room temperature but not at 120 K. In particular, the RAIRS band observed at 1801 cm(-1), which is observed on adsorption at 307 K but not at 120 K, is tentatively assigned to the formation of an O-NO complex. This species forms when a NO molecule bonds on top of an O atom, which results from the dissociation of NO on the Pt{211} surface at room temperature.
Resumo:
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W{100} cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.
Resumo:
The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated.
Resumo:
The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study assesses the use of dried (5% w/w moisture) kudzu (Peuraria lobata ohwi) as an adsorbent medium for the removal of two basic dyes, Basic Yellow 21 and Basic Red 22, from aqueous solutions. The extent of adsorption was measured through equilibrium sorption isotherms for the single component systems. Equilibrium was achieved after 21 days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis was undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters. The performance of the kudzu was compared with an activated carbon (Chemviron F-400). Kudzu was found to be an effective adsorbent for basic dye colour removal, though its capacity for colour removal was not as high as an activated carbon, the potential appeared to exist to use it as an alternative to activated carbon where carbon cost was prohibitive. (C) 2002 Elsevier Science Ltd. All rights reserved.